
VRIA - A Framework for
Immersive Analytics on the Web

Peter W. S. Butcher
University of Chester
p.butcher@chester.ac.uk

University of Chester
nigel.john@chester.ac.uk

Bangor University
p.ritsos@bangor.ac.uk

Nigel W. John Panagiotis D. Ritsos

github.com/vriajs

Top Level React Node: React component
containing an A-Frame scene component
and any other application code.

A-Frame Scene Component: Contains
other A-Frame components and the
<VRIA> React component.

<VRIA> React Component: Placed within
the A-Frame scene, this component is
passed a JSON visualization config.

Visualization Config File: A JSON file
containing a description of the
visualization and controls.

Redux Store: Contains the application
state. It is connected to the visualization
and control components.

Visualization and Control Components:
These components map data to other A-
Frame React components.

The exact structure and implementation of the high-level DOM architecture of an
application that makes use of <VRIA> is up to the user, and there is no
requirement for the whole application to be written in React. <VRIA> can be
integrated into existing applications, with the only requirement being that the
overarching application makes use of A-Frame scenes. The resulting low level
DOM architecture is generated from the JSON config file that is passed to the
<VRIA> React component.

Architectural overview of an example application built with <VRIA>

Interaction Components

Every <VRIA> visualization
component has a
corresponding set of
interaction components
which can be configured in
the visualization
configuration file. New
interactions can be written
with A-Frame and React
and added to your
application with <VRIA>'s
API.

Interaction components
work with a range of input
devices including keyboard
and mouse for desktop
devices, gaze cursors for
mobile devices, and
controllers for 3DOF and
6DOF VR HMDs.

Gaze cursor interaction with <VRIA> on mobile

// App.js

import React from 'react';
import ReactDOM from 'react-dom';
import * as AFRAME from 'aframe';
import { Scene } from 'aframe-react';
import VRIA from 'vria';
import config from './config';

class App extends React.Component {
render() {
return(
<Scene>

<VRIA config={config}/>

</Scene>
);

}
};

ReactDOM.render(
<App/>,
document.getElementById('root')

);

// config.js

import dataset from './populations.csv';

export default {
title: 'Populations over time (thousands)',
data: { dataset },
mark: { shape: 'box' },
encoding: {
x: {
field: 'Year',
type: 'ordinal',
timeUnit: 'YYYY'

},
y: {
field: 'Population',
type: 'quantitative'

},
z: {
field: 'Country',
type: 'nominal'

},
color: {
field: 'Country',
type: 'nominal'

}
}

}

CSV

TXT ...

JSON

Built with WebVR, A-Frame, React and Redux

Dataset
Start with your data1 2 Configuration File

Based on Vega-Lite 3 Application Code
React and A-Frame 4 WebVR Visualization

Interactive and Immersive

Choose from one one of
<VRIA>'s supported data
types.

<VRIA>'s configuration files are based on Vega-
Lite specifications except now you can encode
data in three dimensions.

<VRIA> can slot into practically any
existing Web application, the only
prerequisites are A-Frame and React.

Experience your immersive data
visualization in Virtual Reality on any
device with a WebVR enabled browser.

User experience evaluation of a <VRIA> use case
We conducted a user study to evaluate a use-case scenario, produced with the
current version of <VRIA>, in terms of usability, user experience and the presence
of any simulator sickness symptoms. By evaluating our framework at this
intermediate stage we aimed to inform design decisions going forward, both in
terms of designing <VRIA>'s API, as well as providing guidelines to the users, for
creating more usable visualizations. We collected data using the Simulator
Sickness Questionnaire (SSQ) methodology, the System Usability Scale survey,
timings of task completion and post-experiment open-ended questions. An
overview of our findings are presented below. See our paper for detailed findings.

We present <VRIA>, a framework for building applications for Immersive Analytics using open-standard Web technologies.
By combining WebVR, A-Frame, React and Redux, you can now write simple JSON configuration files to produce interactive
and immersive Web-based visualizations that are ready to be experienced on every WebVR supported platform.

<VRIA> currently supports 3D bar charts (above) and multivariate scatter plots
(right) with more abstract data visualization types planned.

Our framework is in ongoing development, with a number of enhancements
planned. In the next phase we look to build more 3D vis components, along
with corresponding interaction mechanisms. We also plan to integrate
features that allow collaborative tasks in VR space.

P. W. Butcher, N. W. John, and P. D. Ritsos. VRIA - A Framework for Immersive Analytics on the Web. In CHI’19 Extended Abstracts, May 4-9, 2019, Glasgow, Scotland UK, 2019. doi: 10.1145/3290607.3312798

Box plot of SUS scores. The usability of the 2D desktop set-
up is high, compared to the pseudo-3D variant, with the HMD-
based system close in perceived usability to the 2D set-up.

Experiment tasks in action

Box plots showing the difference in completion times across
the three test conditions.


