This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 201X 1

VRIA: A Web-based Framework for Creating
Immersive Analytics Experiences

Peter W. S. Butcher, Nigel W. John, and Panagiotis D. Ritsos, Member, IEEE

Abstract—We present <VRIA>, a Web-based framework for creating Immersive Analytics (IA) experiences in Virtual Reality. <VRIA> is
built upon WebVR, A-Frame, React and D3.js, and offers a visualization creation workflow which enables users, of different levels of
expertise, to rapidly develop Immersive Analytics experiences for the Web. The use of these open-standards Web-based technologies
allows us to implement VR experiences in a browser and offers strong synergies with popular visualization libraries, through the HTML
Document Object Model (DOM). This makes <VRIA> ubiquitous and platform-independent. Moreover, by using WebVR’s progressive
enhancement, the experiences <VRIA> creates are accessible on a plethora of devices. We elaborate on our motivation for focusing on
open-standards Web technologies, present the <VRIA> creation workflow and detail the underlying mechanics of our framework. We also
report on techniques and optimizations necessary for implementing Immersive Analytics experiences on the Web, discuss scalability
implications of our framework, and present a series of use case applications to demonstrate the various features of <VRIA>. Finally, we
discuss current limitations of our framework, the lessons learned from its development, and outline further extensions.

Index Terms—Immersive Analytics, Virtual Reality, Web technologies.

1 INTRODUCTION

MMERSIVE Analytics (IA) is an emerging research theme

that builds on the recent evolution of computer interfaces,
visualization and data science. IA seeks to investigate the use
of novel display and interface technologies in analytical reasoning
and decision making [1], with an ultimate goal to develop multi-
sensory, collaborative, interactive systems that allow users to be
immersed in their data. In this paper we explore the paradigm
of Virtual Reality (VR) as a medium for creating IA experiences
for the visualization of abstract data. Despite the fact that VR
has been around for decades, the recent emergence of affordable,
commercially available head-mounted-displays (HMDs), such as
the HTC Vive [2] and Oculus Rift [3], has reinvigorated the interest
in all things VR.

Following our early preliminary investigations [4], [5], [6], we
were motivated to create a framework that would enable developers
of any expertise to create consumable, interactive, immersive data
visualizations using standards-based Web technologies. Addressing
this challenge, we present our Web-based IA framework, <VRIA>,
designed to facilitate the creation of IA experiences in VR
(Figure 1), using standards-based Web technologies, and via a
visualization creation workflow suitable for developers of all
expertise levels. <VRIA>’s ultimate goal is to enable researchers
to build and share IA experiences for the open Web, as consumable
web components, that can be experienced through a plethora of VR
capable devices, with a single code-base, in a similar manner to
the contemporary, responsive Web.

Our motivation for creating <VRIA> as a Web-based tool, and
with Web-based output, is based on the notion that the Web is the
most ubiquitous, collaborative and platform-independent way to

o PW.S. Butcher and N.W. John are with the Department of Computer Science,
Chester University.
E-mail: p.butcher, n.john@chester.ac.uk.

e PD. Ritsos is the School of Computer Science and Electronic Engineering,
Bangor University.
E-mail: p.ritsos@bangor.ac.uk.

Manuscript received April 19, 2005; revised August 26, 2015.

build and share information [7]. By creating <VRIA> as a native
Web service, our intention is to democratize the development of
IA solutions, building upon recent standards in the domain of the
immersive Web. In the next section we elaborate on this motivation
in more detail, and highlight the advantages of our approach.

The <VRIA> framework described in this paper significantly
extends preliminary investigations that discussed early, now
superseded, versions of our framework [4], [5], [6], [8]. The
current incarnation of <VRIA> presented in this work is suitable for
novice and expert users with varied programming and visualization
experience, has an updated architecture and capabilities, a new
visualization creation workflow and a Web-based building tool.

In this regard, we discuss <VRIA> into four main strands,
corresponding to our main contributions from this paper:

i) A description of <VRIA>’s visualization creation workflow
(Section 4), emphasizing usage patterns for novice,
intermediate and expert users, along with the corresponding
tools that they can utilize.

ii) A detailed account of <VRIA>’s underlying implementation
and features, emphasizing architectural choices, interaction
mechanisms, performance optimizations and scalability
implications (Section 5).

iii) A comprehensive set of use cases demonstrating the various

features and capabilities of <VRIA> (Section 6).

iv) A discussion on current limitations of <VRIA>, and similar
Web-based systems, and how these can be addressed in future
work (Section 7). We also discuss lessons learned from the
design and development of our framework (Section 8).

We also elaborate on our motivation (Section 2) to use Web
technologies and briefly discuss the current state-of-the-art in
creating VR experiences for the Web. In addition, we present
prior visualization works that have inspired the development of
<VRIA> (Section 3), focusing in particular on a comparison with
frameworks and toolkits that facilitate the creation of IA tools and
demonstrations.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 201X

2 MOTIVATION AND BACKGROUND

The Web can be the most platform-independent way to build and
share visualizations, thus achieving ubiquity and strong support
for collaboration [7]. As Roher and Swing [9] highlight, the
Web provides a flexible means for linking applications, data,
information, and users’. It is, therefore, no surprise that the most
popular technologies for data visualization nowadays are from the
Web technologies ecosystem and are essentially based on open-
standards. Libraries and tools such as D3.js [10], Processing.js,
Protovis [11] and Vega [12], [13] have been shaping the landscape
of contemporary data visualization tools.

More importantly, these tools allow the production of interactive
data visualizations as easily shareable, reusable and consumable
components, that can be integrated with other Web-based tools,
through the Document Object Model (DOM). The DOM provides a
common abstraction layer, comprising a set of intrinsic object
functions and their properties, such as a drawing space (e.g.,
canvas), data structures (e.g., JSON), formatting (CSS), or more
exotic features such as real-time communications (WebRTC),
geolocation (Geolocation API) or WebVR [14]. Alongside the
DOM, the Web ecosystem provides an execution environment,
JavaScript, that allows these features to interact with each other
and users. As all Web-based applications are built on top of this
abstraction layer, they share a common language, and can be
consumed by each other, or other tools. Consumption in this
case is not limited to merely re-displaying or extracting base
information, but includes modification and interoperation across
tools and services. Contrary to VR applications created with a
game engine or even their WebGL export, an application built for
the Web (and not on the Web) is truly consumable and can be
loosely coupled with other systems. This approach is not new, as
tools such as Webstrates [15] and Vistrates [16] work on the same
principles. We explore the influence of those tools on <VRIA>, in
Section 3.

The WebVR API [14], [17], and its successor WebXR [18],
provide the link between VR and the DOM via Javascript. WebVR
is an open specification API that has been gaining support with
browser vendors and allows developers to build VR, and soon
Mixed Reality (MR), applications that can be experienced in a
Web browser, and make use of the HTML DOM, much like
the aforementioned visualization libraries. Moreover, WebVR
offers a level of platform independence that extends beyond
the browser, as it can detect the available display hardware and
corresponding handheld controllers, tailoring VR experiences to
the user’s current hardware set-up (a feature called progressive
enhancement [14]). This way, with a single code-base, a VR scene
can be experienced via a standards-compliant browser in most
contemporary HMDs, conventional monitors and smartphones. [17]
WebVR is currently under active development and will eventually
be replaced by the WebXR Device API, which will also incorporate
MR capabilities [18]. VR experiences built with WebVR, such as
the ones produced with <VRIA>, can be reused as consumable
components from a variety of systems and services in the Web-
ecosystem. This can consequently result in the democratization
of the development of IA systems and enable more in-depth and
varied investigations of immersive data visualization.

Overall, <VRIA> has the following high level features, derived
from prior-work influences, discussed in the next section:

i) <VRIA> is built entirely on open-standards Web technologies.

ii) Achieves platform independence through the use of Web
technologies and WebVR’s progressive enhancement features.

iii) Employs a declarative grammar that resembles Vega-lite and
makes our toolkit more accessible and compatible with other
visualization tools.

iv) Produces shareable, distributable and consumable immersive
visualization outputs that can be easily integrated into other
applications, and accessed via the HTML DOM.

v) Provides alternative development paths through: a) an optional,
end-to-end visualization creation tool called the <VRIA>
Builder that comes packaged with <VRIA> and is suitable
for users with no prior programming experience, or b) via a
programming API suitable for seasoned developers.

3 RELATED WORK

Although the term ‘Immersive Analytics’ was only recently coined
by Chandler et al. [19], many aspects of beyond-the-desktop
visualizations [7] have been previously explored. For example,
Lee et al. [20] discuss post-WIMP (Window-Icon-Mouse-Pointer)
interactions; Elmqvist et al. [21] explore fluid, natural interactions
for information visualization; Elmqvist and Pourang [22] describe
the notion of ubiquitous analytics; Jansen and Dragicevic [23]
propose an interaction model for beyond-the desktop; and Willet et
al. [24] discuss situated and embedded data representations.

Amongst this multi-flavored research thrust, VR has a
prominent place as one of the earliest paradigms for beyond-the-
desktop visualization (e.g, [25], [26], [27]). In 2000, Van Dam et
al. [25] presented a research agenda that included a call to action on
how VR could be an effective medium for scientific visualization.
Along with the ever-present challenges of display technologies,
rendering performance, collaboration facilitation and interaction,
Van Dam et al. highlighted a major obstacle being the lack of
standardization that enables interoperability for the development
of VR systems. Their observation, which we believe still applies
to all genres of visualization, is the root of our aforementioned
motivations, albeit in a manner that seeks to build specifically upon
recent advancements of Web technologies [28].

3.1

Aided by the recent availability of new and affordable immersive
interfaces, a large number of efforts have emerged over the last
decade, both in VR and MR. Examples include investigation on the
use of CAVEs, for example in visualizing tensor-valued volumetric
datasets [29], the comparison of CAVEs with HMD-based solutions
in immersive network visualization [30], collaborative immersive
worlds that can handle complex data [31] and the immersive display
of 3D trajectories, such as for air traffic control [32]. Such use-
cases demonstrate the potential of VR/MR in analytical settings,
and serve as inspiration of what experiences <VRIA> can and will
(see future work in Section 8) offer.

Of notable importance to our motivation is the work of
Drouhard et al. [33] who combine VR and data analytics in
materials science, discussing challenges as safety, cybersickness,
interactivity, data computation, feedback elicitation and user
behavior acquisition. Importantly, they highlight the requirement
for rigorous research evaluations so that this incarnation of VR is
not “wasted’ as previous ones have been. <VRIA>’s ultimate goal
is to offer a platform upon which investigations on these aspects
can be more accessible though the Web, through interoperability
with tools assessing such issues. For example, with <VRIA> it is

Immersive Visualization in VR/MR

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

BUTCHER et al.: VRIA: A WEB-BASED FRAMEWORK FOR CREATING IMMERSIVE ANALYTICS EXPERIENCES 3

2
5
£
8
=
S
3
2
8
&£

Fig. 1. <VRIA> enables the creation of interactive visualization experiences, ranging from simple bar charts and scatter plots to complex linked and
composite designs. The left image shows a 3D bubble chart demonstrating how data can be mapped to several encoding channels, including x, y and
z as well as size, color etc. The middle image shows a composite, situated visualization of electric vehicle charging points in York, UK in 2017 where
the height of the cylinders, superimposed on a map, denote the number of charging points per location, and the color denotes charge speed. The
right image is a 3D bar chart showing the populations of the top-ten most populated countries since 1950.

easy to build in-VR questionnaire-based and user-action recording
evaluations using simple Web tools, as demonstrated previously [6].

Approaches that use MR, or its subset Augmented Reality
(AR), [34], [35], [36], [37] are also of interest, as many of
the underlying technologies of <VRIA> can work on the MR
domain [38] as well. In fact, <VRIA> does offer support for
basic investigations in MR, using Web-based MR libraries such as
AR js (see Section 7). The common theme of these aforementioned
efforts is that they explore novel ways to interact with data, often
seeking to overhaul traditional VR/AR [36] and visualization [34]
approaches within the scope of data visualization. We believe
that by creating <VRIA>, we provide a framework upon which
researchers can build similar, multifaceted investigations on the
Web, by combining different peripherals, libraries and systems over
the unified abstraction layer that the HTML DOM offers.

3.2

In addition to the influences described in the previous section,
<VRIA> draws inspiration from toolkits which focus specifically
on creating data visualizations in VR and MR, developed in the
last couple of years. We provide a comparison of <VRIA> to those
tools, in Table 1, highlighting our framework’s high-level feature
parity, albeit using Web technologies natively and in its entirety. In
that regard, reliance on game engines is traded for reliance on open
standards, as envisioned by Van Dam et al. [25].

Cordeil et al. [39] introduce an immersive system built in Unity
called ImAxes, which has evolved to IATK [40], for exploring
multivariate data using virtual axes that can be arranged and

Immersive Visualization Toolkits

combined in virtual space, and viewed on VR and AR displays.

IATK utilizes an expressive grammar supporting 1D, 2D and 3D
orthogonal plots. Visualizations are created via the Unity GUI
and/or a low-level API allowing for custom visualizations and
interactions. DXR [41] is another Unity-based visualization toolkit

for rapidly prototyping data visualizations for VR/AR applications.

It uses a declarative grammar, similar to that of Vega-Lite. DXR
supports custom visual marks, rendering data points as Unity game
objects. This results in lower performance compared to IATK
where data points are rendered in a single mesh object, allowing
computationally expensive tasks to be performed on the GPU
instead of the CPU. For both toolkits, exports can be used on the
Web via the WebAssembly (Wasm) WebGL export. <VRIA> has

a similar philosophy to these toolkits, with regard to the usage
features provided to the user, including a declarative grammar,
linked-views support, and custom mark specification via A-Frame.
However, due to its open-standards Web-based implementation,
<VRIA> offers genuine platform independence and a vendor-
agnostic development ecosystem, usage versatility as it can be
used without licensing implications, and shareable, distributable
and consumable output without Wasm.

Similar Web-based toolkits have also been developed. VR-Viz
is a Web-based visualization library built with A-Frame and React
which uses a grammar approach based on that of Vega-Lite [13].
However, it is relatively limited in versatility, as the visualizations
are "baked’ into the renderer mechanisms and are effectively stand-
alone depictions. Moreover, our work has significant differences to
VR-Viz in terms of performance optimizations, usability and the
visualization creation workflow (see subsection 5.2). Stardust [42],
a GPU-based visualization library, harnesses the power of WebGL
to perform visualization rendering, and offers an alternative to
HTMLS Canvas, D3, and Vega for large numbers of graphical
marks. Startdust shares similarities with our work, such as a
declarative data model, web-technologies and WebVR support.
However it leaves mechanisms such as visualization linking, VR
interactions to other tools, and hence is not included in our
comparison table. <VRIA>, on the other hand, provides a holistic
framework for building consumable IA experiences on the Web, as
VR spaces, with support for a variety of interface devices.

TABLE 1

Comparison: Immersive Analytics Toolkits
Feature IATK DXR VR-Viz <VRIA>
Platform Unity Unity Web Web
Displays VR/AR VR/AR VR VR/AR
Dimensionality 1/2/3D 1/2/3D 3D 1/2/3D
Interactions v v v v
Linked Views 4 v v
Custom Marks v v v
Code Playground O & (4
GUI v 4 4
Declarative Config(!) v v v
API v v

& other software is responsible for providing that feature

(1) the vis config, <VRIA>’s declarative configuration, is described in subsection 5.3

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 201X

VIS Config

Data VRIA Builder as JSON

K e (0

LOAD
1
! WebVR Developers (Optional)

Novice Users

[conrig)
EXPORT INTEGRATE
== [==

Interactive and Immersive

VRIA API WebVR Visualizations

VIEW

LNon -WebVR Developers

App Code

Fig. 2. Visualization creation workflow demonstrating how <VRIA> is suitable for users with different levels of programming experience. Novice users
can upload datasets to the <VRIA> builder tool and quickly produce immersive visualizations without coding. Intermediate users can use the builder
to create a visualization configuration file or write one from scratch to use in their application. Finally, advanced users can make use of <VRIA>’s API

to develop additional features (see subsection 5.4).

3.3 Influences of Information Visualization Toolkits

In addition to the aforementioned influences, we have built <VRIA>
to provide support for a number of established mechanisms
and contemporary approaches that facilitate the creation of
visualizations. The importance of this approach is twofold. First
and foremost, <VRIA> seeks to integrate good practices from the
visualization domain, and become a genuinely enabling technology
for visualization researchers who are used to said techniques on
non-immersive, Web-based tools and systems. Secondly, by doing
so, <VRIA> is purposefully built for Immersive Analytics and can
therefore produce more streamlined output, rather than being an
add-on to a game engine that has a wider scope and purpose.

For example, we separate a visualization’s specification from
its implementation using a declarative grammar based on Vega-
Lite [13], motivated by the latter’s wide adoption, conciseness
and expressiveness. We highlight commonalities and differences
between our grammar and Vega-lite in subsection 5.2. We also
provide building blocks for creating custom visualization designs,
influenced by the DOM and tools such as Prefuse [43] and in a
broader sense by the InfoVis toolkit [44]. This allows developers to
rapidly prototype (Section 4) custom visualizations and interactions
via simple configuration files, with A-Frame and React components,
as well as by using <VRIA>’s declarative API (subsection 5.2).
Finally, we integrate D3.js [10], which provides powerful data
transformation and manipulation mechanisms, and is a library
many visualization developers are familiar with.

More importantly, beyond the aforementioned operational
similarities with visualization tools, <VRIA>’s philosophy has
strong similarities to Webstrates. Webstrates is based on the
notion of components, shareable among many users, distributable
across many devices and maleable by users. <VRIA> has a
similar character, in terms of the created outputs, which we deem
as shareable, distributable and consumable. We prefer the term
consumable as it emphasizes the reuse of <VRIA>’s exports in
other contexts. However, <VRIA> does not have, or define the
underlying infrastructure that these tools have. In that regard,
the similarities are due to the use of Web technologies, and the
DOM as the underlying and unifying mechanisms, rather than by
dedicated architectural design. Nonetheless, being part of the Web
ecosystem, we envision scenarios where <VRIA>’s components
could be used along with, or consumed by, like-minded tools
such as Vistrates [16]. In many ways, both approaches converge
on Mackay’s [45] vision of augmenting the environment through
interactive, networked objects, which in many ways extends more
traditional definitions of AR [46] by Milgram and Kishino [47],
and Azuma [48]. We believe that by building VR-based interfaces

with this ultimate vision in mind, the transition to MR-capable
tools will be easier. This is also why with <VRIA> we have already
explored the integration of basic AR capabilities, facilitated by the
HTML DOM and popular AR-enabling JavaScript libraries (see
Section 7).

4 VISUALIZATION CREATION WORKFLOW

We have designed <VRIA> to be accessible to novices and
experts alike by providing different, yet complementary, creation
workflows. Figure 2 outlines how users of different levels of
expertise and abilities in programming visualizations can utilize
<VRIA>. The starting assumption is, naturally, that users have a
dataset they want to visualize in an immersive manner. <VRIA>
currently supports the visualization of tabular data in JSON or CSV
format. From this stage of the <VRIA> workflow, users can follow
different development paths to generate interactive and immersive
WebVR visualizations, based on their expertise.

For example, users with some programming ability might
choose to use the builder to generate a <VRIA> visualization
configuration file which they can then use in their WebVR
application code. Likewise, users with expertise with grammar-
based visualization tools might choose to port an existing Vega-
Lite or other similar configuration file into the <VRIA> grammar,
test and customize it in the builder, and then integrate it in
their application code. Finally, users with previous WebVR
development experience can harness <VRIA>’s API to develop
new visualizations and interactions.

4.1 The <VRIA> Builder (for beginners)

The <VRIA> Builder (see Figure 3), is aimed mainly at non-
programmers and is a Web application available on the project’s
website. It also comes packaged with <VRIA>’s NodeJS module.
It is essentially intended to be used as a tool for learning the
grammar, as well as a demonstration of the visualizations that
<VRIA> is capable of producing. Furthermore it allows users to
conveniently prototype and test immersive experiences without
leaving the browser. In this regard, it can also facilitate rapid
prototyping and iterative development of visualization designs for
power users as well. This frictionless ability to rapidly prototype
visualization designs and get instant feedback makes <VRIA>
accessible to a wider audience. Last but not least, the Builder is
an example of <VRIA>’s consumable nature, as it is essentially a
GUI-wrapper for customizing <VRIA>’s scenes.

The <VRIA> builder enables designers to build-up a
visualization configuration, iteratively customize it and immediately

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

BUTCHER et al.: VRIA: A WEB-BASED FRAMEWORK FOR CREATING IMMERSIVE ANALYTICS EXPERIENCES 5

VRIA Builder [1:0.0

{ } EbiToR

“TheIris lowerDatt

Fig. 3. The <VRIA> Builder, an optional end-to-end visualization creation
tool that comes packaged with our framework. It enables a user to browse
an existing library of examples and allows them to rapidly prototype and
test custom visualizations without leaving the browser. Here, a user is
creating a 3D Scatter plot of the Iris Flower dataset from the JSON editor.

see the results. The resulting visualization can be viewed within the
builder as a 3D interactive scene, or immersively via a VR headset.
The builder’s graphical user interface (GUI) allows a user to upload
their own dataset or choose from a set of examples. These examples
can then be configured via a set of drop-down menus, allowing
the user to set various parameters including the type and shape
of marks, and channel encodings. The advantage of presenting
parameters in this way is that it requires no prior knowledge of
the grammar, whereas users do not have to worry about having
to fathom JSON, with which they may be unfamiliar. The builder
works in a similar way to that of DXR’s in-situ GUI, although it
is not part of the VR scene and cannot yet be viewed from within
the VR headset. We plan to offer this feature in a future version to
let designers tailor their visualizations immersively. From within
the builder, users can also browse a gallery of example plots which
can act as templates. These plots can be loaded in, edited in-situ
and immediately previewed which serves to speed up the learning
and development process.

4.2 <VRIA> for non-WebVR developers

The <VRIA> builder also serves to accelerate the learning process
and productivity of more experienced programmers, especially
those that have little to no WebVR development experience. As
such users are more likely to have used JSON before, they may be
more inclined to edit any configuration files directly, as opposed to
using the builder’s GUI, which may be tedious if they’re already
familiar with the grammar.

For developers who are new to writing WebVR experiences, the
simplest way to get started with <VRIA> is to create a new React
project; however, with a few extra steps, <VRIA> can be integrated
into an existing non-React project, with the only requirement being
that the overarching application makes use of A-Frame scenes. As
shown in Figure 2, intermediate users can write a configuration
file themselves or produce one through the builder, which they can
then export and integrate into a standalone application.

4.3 <VRIA> for WebVR developers

As the builder is responsible for parsing and generating
visualization configuration files for standard <VRIA> features,
any new bespoke features that are developed with the API will not
be available in the builder. Thus, an advanced standalone project
that uses <VRIA>’s API is beyond the scope of the builder’s
intended purpose. For users who have experience with WebVR

~
React D3.js cee

A-Frame
Three.js

JavaScript J

g N

WebVR WebGL Gamepad API

Browser

N J

Browser API

Fig. 4. <VRIA> is built upon the WebVR stack. At the lower level, the
browser acts as a rendering engine. WebVR manages the interface with
the HMD and its controllers (via the Gamepad Extensions API), or the
necessary fallback to a non-immersive display (e.g., a desktop display
in 2D). WebGL handles hardware acceleration for the 3D graphics. All
3D graphics are managed by Three.js and, at a higher level, A-Frame. At
the top of the stack, <VRIA> utilizes other JavaScript libraries including
React and D3.js (see Section 5).

and A-Frame programming, the builder is still useful for learning
the grammar and prototyping the initial structure of their <VRIA>
application. We elaborate on the <VRIA> API and how it can
extend applications in subsection 5.2

5 THE <VRIA> FRAMEWORK

<VRIA> is a JavaScript (NodeJS) module written in React, a
JavaScript library for building user interfaces, and A-Frame,
a framework for building WebVR experiences. A-Frame is an
entity component framework that provides declarative, extensible,
and composable structure to Three.js [49], [50], an open-source
Javascript library that enables programming of 3D scenes in a Web
browser (see Figure 4). Three.js uses the HTMLS5 canvas element,
SVG or WebGL as rendering engines and features a scene-graph,
several cameras, navigation modes, shaders (including custom) and
material support. <VRIA>, through A-Frame, provides support for
all major HMDs and their handheld controllers, including the six
degrees of freedom (6DOF) HTC Vive/Focus, Oculus Touch/Quest
and Windows MR dual controllers, as well as 3DOF Daydream,
Oculus Go and Gear VR single controllers.

More importantly, A-Frame exposes an HTML DOM scene
graph that React can use to efficiently update only the parts of our
scene that require re-rendering. While operations such as searching,
modifying, adding and removing nodes from the HTML DOM
are very fast, re-painting large parts of the DOM tree can be
computationally expensive. React uses a virtual DOM to calculate
the differences in the HTML DOM before and after a change, so
that only the affected nodes get re-rendered. When re-rendering a
DOM tree for a data visualization, with potentially thousands of
data points, reducing unnecessary re-paints is essential.

5.1 How <VRIA> works

The internal process that <VRIA> undergoes to convert a
dataset and visualization configuration file into an immersive
and interactive WebVR visualization, is depicted in a high-
level overview in Figure 5. First <VRIA> interprets a provided
visualization configuration file (vis config), inferring any
missing values, filling them with appropriate defaults. The complete
configuration is then used to map data to graphical marks and
their visual encoding channels. Once all of the mappings are
completed, values are passed through to the visualization renderer

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 201X

which constructs the visualization, user interface controls, axes
and legends etc., and adds them to the scene. Configuration
interpretation and data mapping takes place at runtime and as
a result any changes to the dataset or visualization configuration
will permeate through a <VRIA> application to respond in real
time. As well as producing details-on-demand by hovering over
marks with an HMD controller or gaze cursor, interactions alter the
visibility of marks via query filters and toggles, and can be triggered
by built-in or custom controls. All interactions are real-time.

Tl-eR-E- i

Interpret Data Mapping Build
Vis Config and Transformation Vis

VRIA

Vis Config
as JSON

Fig. 5. High-level overview of <VRIA>’s process for converting data and
a visualization configuration into an immersive visualization. <VRIA>
interprets the configuration file (formatted in JSON) and its associated
dataset. Missing values in the vis config are inferred to build a complete
configuration. The data is then mapped to graphical marks and their visual
encoding channels. <VRIA> then constructs and renders the visualization,
and corresponding Ul controls.

5.2 Architectural Overview
<VRIA> is packaged as a NodeJS module which exposes a React

component of the same name plus an API for extended functionality.

The exact structure and implementation of the high-level DOM
architecture of an application that makes use of <VRIA> is up
to the user, and there is no requirement for the whole application
to be written in React. <VRIA> can be integrated into existing
applications, as long as it makes use of A-Frame scenes to present

a virtual environment in which the visualizations can be placed.

Figure 6 shows a simplified component tree of an example <VRIA>
application and the entry point for the vis config.

High Level DOM Architecture ~
Written by user
<App>
———L------- -)
<Scene> Other app code
Vis Config — <VRIA> Other A-Frame code
& J
4 s I
<View> Multiple Views
T I T-——"""""9
1
<Axes> <Marks> <Controls> |
i
Other <VRIA> Components
Generated by <VRIA>)

Low Level DOM Architecture

Fig. 6. The high-level DOM architecture is written by the user. <VRIA>

can be integrated into existing 2D or immersive visualization applications.

The low level DOM architecture is generated by <VRIA> based on the
visualization configuration (simplified for brevity).

The top level node depicted in Figure 6 is a React component

(depicted as @) that contains an A-Frame scene component ().

The latter can contain any other A-Frame components that a user
desires for their scene. For example they may wish to create a
virtual office or a sports pitch that they can then overlay with
visualizations. The <VRIA> NodeJS module provides a React
component called <VRIA> (@) which must be placed within
the A-Frame scene element and should be passed a visualization
configuration file (3). Every aspect of the visualizations that this
component generates is mandated by the configuration file that is

passed to it. The basic structure of what is generated is shown in
Figure 6. <VRIA> will generate one or more view components (@3),
with each containing a single visualization and its corresponding
interactions. Each view component maps data to React components
(@) that depict the visualization, and all user interfaces with A-
Frame and ThreeJS. They also respond to user interactions which
then trigger any required updates to the visualization. Views can be
linked together in the vis config, and interactions that are made
on any set of views that are linked together will update the other
views in that set, with the appropriate filtered result. An example
of a boilerplate implementation of the high level DOM architecture
can be seen in Figure 7.

{ import React from 'react’;
"title": "Populations over time", import ReactDOM from 'react-dom';
"data": { "url": "populations.csv" }, import * as AFRAME from 'aframe';
"mark": "bar", import { Scene } from 'aframe-react';
"encoding": {

"x": import VRIA from 'vria';
"field": "Year", import config from './config';
"type": "ordinal",
"timeUnit": "year" class App extends React.Component {
}, rendez() {
"y { return(
"field": "Population", <Scene>
"type": "quantitative"
1, <VRIA config={config}/>
iz g
"field": "Country", </Scene>
"type": "nominal" 3
s }
"eolox": { 1
"field": "Population”,
"type": "quantitative" ReactDOM. render(
<App/>,
} document . getElementById('root')
3 bH

JSON — JavaScript (ReactJs) —

(a) <VRIA> Example Vis Config File (b) <VRIA> React boilerplate example

Fig. 7. (a) Basic visualization configuration as JSON for a 3D bar chart
visualization (shown in Figure 13). (b) Example boilerplate code for a
<VRIA> application written in React. The vis config is imported into
the application and passed to the <VRIA> React component.

5.3 Visualization Configuration

<VRIA> currently supports tabular data formatted as JSON or CSV.
Data sets may contain any number of fields and records. Supported
visualization types currently include Cartesian plots such as scatter
plots and bar graphs with more visualization types planned.

<VRIA> provides a simple method of converting a dataset
into WebVR-ready 2D and 3D visualizations, coupled with a set
of appropriate user interface controls (interactions), through a
declarative format described with JSON. This forms a visualization
configuration that our framework can interpret (see Figure 5). Our
grammar is based on Vega-Lite [13] and allows users to create
different visualizations through setting parameters, properties and
constraints tailored to each visualization type. It does not yet
support Vega-Lite’s advanced transform functionality, but existing
Vega-Lite visualization specifications should need little to no
adjustments to work in <VRIA>.

In its most basic form, a visualization configuration file consists
of a dataset, the type of graphical mark to use and a set of
visual encoding channels which map to individual data points
(eg., x, y, z, color, opacity, size, width, height, depth, x-rotation, y-
rotation and z-rotation) written up in a JSON file or as a Javascript
module (see Figure 7). Omitted fields and settings are inferred
during interpretation and are tailored for optimal presentation and
comfortable viewing. Mandating that users must specify values for
every parameter of the vis config could be cumbersome. Instead,
by inferring missing values, the resultant configuration is concise.
<VRIA> requires only a vis config for basic functionality. If
extra functionality is required, such as a custom set of interactions,
graphical marks or channel encodings, then these can be created
with A-Frame and <VRIA>’s APIL.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

BUTCHER et al.: VRIA: A WEB-BASED FRAMEWORK FOR CREATING IMMERSIVE ANALYTICS EXPERIENCES 7

5.4 <VRIA> API

<VRIA> offers sufficient built-in flexibility to design basic charts
for many different applications, yet designers may wish to alter
certain characteristics of their visualizations and customize them
further. For example, they may wish to alter the visual style of a
visualization to blend it into the theme of an existing application,
where custom marks or custom interaction controls are more
appropriate than what is offered as standard. <VRIA> offers
the ability to alter the visual properties of visualization features
(e.g., axes, titles, legends, UI controls etc.) through the vis
config. However, for adding custom marks, encoding channels
and interaction Ul controls, designers will need to utilize <VRIA>’s
API. With the API, developers can map inputs and Ul controls to
data transformations, which are then reflected in the visualization.
The exact nature of the interactions and Ul controls are left to the
user; the framework then connects everything together. Primitive
shapes, models, animations and any physics-based UI controls (e.g.,
pushable buttons, sliders etc.) can be created with A-Frame and
then integrated into a visualization via the API and vis config.

The API reports the current state of each visualization,
including information such as all of the currently visible data
points. This information can then be consumed by other parts of an
application, outside of the context of <VRIA>. This is particularly
useful in order to integrate with other tools, which may require
information on the current state of a <VRIA> visualization. Data
transformations for new visualizations can be implemented from
this data with existing libraries such as D3.js. Examples of usage
of our API can be seen in Section 6.

5.5

The ability to provide appropriate interaction mechanisms based
on the platform and hardware available to users is critical
for Web-based TA applications. The Web’s ubiquitousness
is very much based on the notion of adaptability and
responsiveness. <VRIA> utilizes A-Frame’s capability to provide
suitable interaction mechanisms regardless of available hardware,
employing progressive enhancement [17]. An example of this
might be offering a drag interaction in the form of two separate
gaze clicks at the extremities of the desired selection. Most of the
applications built with <VRIA> for our use cases (see Section 6)
are not intended for use on smartphones. However, when viewed
on a smartphone the user is still able to fully interact with every
UI control available, through touch-based interaction when not in
VR mode, and gaze interactions when using Google Cardboard.
UI controls (e.g., sliders, buttons, toggles, marks etc.) are bound
to the depicted data and update the visibility of marks according
to the type of interaction which is being made. Since <VRIA>
employs progressive enhancement strategies, the Ul controls which
enable the various types of interactions that are available depend
on the platform and hardware that are currently available to the
user. Custom UI controls can be created with the <VRIA> API.
Selection, Filtering and Details on Demand are facilitated
in <VRIA> through a set of interaction types which can be
selectively enabled or disabled via the vis config. <VRIA>
supports gaze and controller-based selection for filtering tasks and
details on demand. Multi-dimensional queries are also possible
through constraint combinations. See subsection 6.2 for further
description and usage examples of these interaction mechanisms.
Brushing and linking capabilities are also enabled through
the vis config. <VRIA> provides a mechanism to constrain

Interaction Mechanisms

S]
T 80 |- —
o
5]
@ 60 [A—Ap -
o T~
o e
$ 40 |- | —@— Desktop— HMD A N\ |
1S Desktop — monitor \ N\
<
IC 20 | —¢— Smartphone \‘\\\\ \' |
~—,
100 1,000

Data Points (log10)

Fig. 8. Performance profiles of a scatter-plot implemented in <VRIA> and
rendered by the builder in the Mozilla Firefox (v68) browser on Windows
10 with an Nvidia GTX 1070 GPU and AMD Ryzen 5 1600X, viewed
with an Oculus Rift CV1 (2160x1200 @90Hz), and monitor (1920*1080
@60Hz). The same scatter-plot is rendered on a OnePlus 6T Android
smartphone (1080x2280 @60Hz), in Mozilla Firefox (v68).

the range of variables per axis resulting in filtered selections
which can then be mapped across linked views. <VRIA>’s support
for the linking of visualizations with multiple coordinated views
enables the developer to compose combinations of visualizations
and integrate them with existing scenes, or to create dashboards.
Each view can be filtered and the results from such operations will
update all other linked views in the scene.

5.6 Performance and Scalability

Maintaining adequate frame rates, while rendering high number of
data points, is one of the most challenging aspects of building a
VR experience. A web browser’s resultant frame budget is typically
16.6ms for a common 60Hz display [51]. For a VR scene using a
HMD such as the Oculus Rift or HTC Vive, the frame budget will
be 11ms as these devices have a 90Hz refresh rate. Desktop displays
usually only require a scene to be rendered in mono, whereas a
VR headset requires a stereo image, leaving just 5.5ms to create
an image for each eye. Consequently, performing the necessary
computations for rendering each frame in time can be challenging.
If the frame budget is exceeded, the browser is unable to render
a new frame, which results in (at least) a lost frame, leading to
uncomfortable VR experiences and increased risk of cybersickness.
Therefore, certain performance optimizations are necessary.
Figure 8 depicts a performance profile of <VRIA>, rendering a
scatter-plot of different numbers of data points encoded as spheres.
Three platform set-ups are presented: a smartphone, a desktop-
HMD set up, and a desktop-monitor set-up. The results demonstrate
the challenges inherent in Web-based VR with frame rates dropping
significantly over 1000 points for non-mobile set-ups, and at a
slightly slower rate after 100 points for mobile. Nevertheless, the
observed performance is very similar to the HoloLens condition
reported for [ATK [40]. It is also noteworthy that the choice of text
rendering can also have a detrimental effect on performance This
consequently has implications on labeling strategies required for 3D
plots. <VRIA> utilizes Signed Distance Field (SDF) fonts which
provide good clarity (crisp edges) and relatively good performance.
In <VRIA>, some performance optimizations incorporated
are at the React level, and are intended to provide fine-grained
control over when a component should update (e.g., using the aptly
named shouldComponentUpdate lifecycle method), preventing
unnecessary re-renders. There are also performance optimizations
at the ThreelS level, such as the re-use and merging of object
geometries to save on memory and the number of draw calls per

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 201X

frame. Built-in and user-created visualizations and Ul controls
make use of these optimizations.

Inevitably, if the rendered scene is very complex users will
notice stuttering or choppiness (”jank” in JavaScript lingo) when
there is motion on the display. One solution is to “debounce”
interaction operations, a technique for limiting the rate at which
a function can be triggered. In <VRIA> we reduce the jank
associated with stacking multiple expensive computations together
in quick succession, by waiting for a user’s interaction to be
completed before attempting a re-render. Furthermore, we batch
computations over multiple frames and only render the result once
all computations have been made. We achieve this by utilizing a
callback function to perform computations on the main event loop,
during periods in which the CPU would normally be idle.

6 UsE CASES

To demonstrate the features and versatility of <VRIA> we have
devised a set of use cases, which we discuss in this section. The
use cases can automatically be viewed and interacted with in VR.

6.1

<VRIA> can create simple Cartesian visualizations using
configuration files similar to those of Vega-Lite to create one, two
(Figure 9 top) and three (Figure 9 bottom) axis scatter plots and bar
charts with multiple mark shapes. One and two dimensional charts
are supported as they can be useful in linked-view visualizations.
These plots can be produced by mapping data fields and their
corresponding data type to the x, y or z and other encoding channels
in the vis config (highlighted in OJ).

Cartesian Plots

Monthly Rain
if
"title": "Monthly Rainfall...", allin Wales i

"data": { "url": "cyl8rain.csv" },
"mark": "bar",
"encoding": {

2018 (Millimetreg)

Rainfall

x": {
"field": "Month",
"type": "nominal"

3,

iy g
"field": "Rainfall",
"type": "quantitative"

"title": "The Iris Flower Dataset”,
"data": { "url": "iris.csv" },
"mark": "point",

"encoding": {
s {
"field": "petalWidth",
"type": "quantitative"
>
s {
"field": "petallLength",
"type": "quantitative"

<)
=
5}
=
©
P
©
o

b
"field": "sepallLength",
"type": "quantitative"

3,

"color": {
"field": "species",
"type": "nominal"

Fig. 9. Top: A 2D bar chart visualizing precipitation in Wales, UK in 2018
and its corresponding vis config file. Bottom: A 3D bar chart visualizing
the Iris Flower Dataset and its corresponding vis config file.

6.2

As aforementioned, interactions can be selectively enabled or
disabled via the vis config file, which also allows for the
creation of basic selection and filtering controls. New, bespoke
interaction controls can be added to <VRIA> via the API. These

Interaction

"mark": { "type": "point",
"tooltip": { "content": "data" }

The Iis Flower Dataset

3,
"encoding": {
e { Legend: Species

petalWidth", | 1o]
quantitative", | * N]

: false

5

{
: "Species",
"filter": true

Fig. 10. Demonstration of three types of interaction mechanisms in
<VRIA>, selection and filtering, and how these are implemented via
the vis config.

two approaches allow for both constraints-based interactions and
interactions that allow for external manipulation. Figure 10 shows a
demonstration of three types of interaction mechanisms in <VRIA>
and how these are implemented via the vis config.

The user has filtered the data via three axis filters which denote
the threshold of values to show for the particular axis. These can
be moved up or down the axes to fine tune the selection. They are
enabled in the vis config by adding the filter option to the axis
for a particular encoding channel (O). The user has also filtered
the data via the legend, which allows them to selectively toggle
the visibility of data in a certain category. This can be enabled
in the vis config by adding the filter option to the legend (I).
By hovering over a data point, a user can fetch details-on-demand
which are attached to the controller, if one is present, or displayed
to the side of the chart otherwise. This interaction is enabled by
specifying the tooltip property of the mark (O). Clicking a data
point will freeze the selection and let the user bring the controller
closer to further inspect the output. On displays which do not
support controller input, say a smartphone, the user is presented
with a gaze cursor instead. This interaction is supported on non-
immersive displays via a mouse or touch interaction.

6.3 Embedded Visualizations

IA scenes can also include A-Frame assets, upon which we can
embed data to give them additional meaning, or enhance their
context. Such assets can either be A-Frame primitives, models
or combinations of those, and are added in the A-Frame scene
alongside <VRIA>. Figure 11 demonstrates a linked and filtered

X",
quantitative",
{ "filter": true }

"axis":

1,
nyts g
"field": "y,

"type": "quantitative",
"axis": { "filter": true }

5
"coloxr":

": true }

Fig. 11. Assets can add meaning to visualizations. Here we have created
a tennis court asset inside A-Frame and used it to mark out the area over
which we place a linked and filtered visualization showing the service
game of two tennis players.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

BUTCHER et al.: VRIA: A WEB-BASED FRAMEWORK FOR CREATING IMMERSIVE ANALYTICS EXPERIENCES 9

"data": { "url": "cars.csv" },
"views": [

"mark" :
"type": "point", "shape": "car"
"encoding": {
[T
'. “price",
": "quantitative",

g
3
=4
k3
]
2

Ltz gL
"o width!,
"height": { "field": "height", ..
": { "field": "length", ...

': "make"

': "nominal",

"mark" :

type": "point", "shape": "car"
"encoding”: {

"X {

price”,
""quantitative",

[. wprice,
"filter": true

3,

[V
"field": "engine-size",
"type": "quantitative", ...
3,
"width": { "field": "width", ... },
"height": { "field": "height", ... },
"depth": { "field": "length", ... },
"color": {

"field": "make",
"type": "nominal",
"legend": false

Fig. 12. An example of multiple linked views in <VRIA> and their corresponding vis config file (shortened for brevity). Any number of plots can be
linked and changes to one of the filters or the legend will update the other views. This example also demonstrates the use of a custom mark. Custom
marks can also be 3D models (e.g., gLTF), which are nonetheless expensive to render, hence why we opt for a simpler mark for this example.

visualization of the service of two tennis players which has been
placed over a scaled-down tennis court model, created with A-
Frame. The tennis court asset puts the data points into context and
provides a better understanding of the data, than if the points were
presented as regular side-by-side scatter plots, for example. It is
possible to remove all chart elements and leave just the marks, so
that plots can be used to symbolize data without explicitly inferring
its magnitude.

6.4 Linked Views and Custom Marks

Linking allows for the output of a selection in one visualization
to be mapped to the output of other visualizations and vice versa.
Any number of visualizations can be linked together in <VRIA>.
Figure 12 shows an example setup using a chunk of the data
from the UCI Machine Learning Repository’s Automobile Data
Set and demonstrates the linking of multiple views. A 3D and
2D scatter plot have been linked together in a single vis config
via the views array (). The views array contains the mark type
and encoding channels associated with each individual plot. These
plots use a custom car mark () (loaded via the API), each with an
individual width, height and depth corresponding to the size of the
car they depict. Any changes to the legend, or filters (O) in either
plot will update the other. The legend in the second plot has been
disabled to avoid duplication.

6.5 Multiple Users

<VRIA> supports the creation of collaborative environments,
allowing multiple users to interact with visualizations in real time,
and can be integrated with existing JavaScript networking libraries
to offer this functionality. Figure 13 demonstrates an application
that uses the Networked A-Frame component (an abstraction
layer over WebRTC and WebSockets), and its default avatars,
and shows two users interacting with a visualization. Users in such
a collaborative VR space have access to all available interactions
provided by <VRIA>. In addition, <VRIA>’s API can instead be
used with lower-level networking libraries such as Socket.IO and
the aforementioned WebSockets and WebRTC. A description of
any updates, resulting from any interactions that have been made is
passed between <VRIA> instances. These messages synchronize
the current view between multiple clients.

Popuatinsoin:

ﬁm\\\ >

Country

Fig. 13. An example of a multi-user environment enabled by the open-
source Networked A-Frame component.

7 LIMITATIONS AND FUTURE WORK

We have so far presented our motivations for developing
<VRIA> using standards-based Web technologies, along with
our framework’s visualization creation workflow, implementation
architecture, and features demonstrated through use cases. In this
section, we focus on limitations, and future work.

Visualization Types. <VRIA> currently supports Cartesian
plots where data points are represented in a bar graph or scatter
plot structure. The range of possible encoding channels that these
plots support, beyond x, y and z, allows for the visualization of high
dimensional datasets. The ability to add custom marks and encoding
channels, as well as being able to alter a chart’s appearance make
these two underlying chart structures remarkably versatile and
suitable for a wide variety of use-cases. However, we plan to add
support for other coordinate systems (eg. geographical/spherical)
to facilitate a wider range of data visualization use-cases.

Data model. <VRIA> currently supports tabular data formatted
as JSON or CSV. We plan to support other data types such
as hierarchical, network and relational data models, to create
visualizations such as node-link diagrams. We also plan to extend
current mechanisms to support GeoJSON and TopoJSON.

User Experience (UX). <VRIA> supports the development
of IA experiences by developers of different expertise levels.
Regardless of the effort to make <VRIA> as user-friendly as we
can perceive, our evidence on the UX associated with using our
framework is limited. We have previously evaluated IA experiences,
produced with previous versions of <VRIA> in terms of the
resulting UX [6]. Students have also used the current <VRIA>

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 201X

version in undergraduate Computer Science final-year projects
successfully, for prototyping a variety of IA demonstrations, similar
to our use cases. Finally, we make <VRIA> publicly available
for the visualization community to use and wish to conduct a
longitudinal assessment of our framework’s UX, from the points of
view of developers and end-users of the experiences.

Visual vocabulary for Immersive Analytics. A challenge that
transcends all flavors and underlying technologies of IA, is devising
a suitable visual vocabulary for VR/MR worlds, that facilitates the
visualization pipeline. Bearing in mind the usage patterns of IA
systems in VR/MR can be very different to traditional approaches,
there is a need to determine and evaluate mechanisms for displaying
data in immersive ways. <VRIA> facilitates this investigation due
to the aforementioned synergy with visualization libraries, as well
as due to the plethora of interface devices it supports from the
outset, and with a common codebase.

Future Development. In addition to the aforementioned
enhancements in supported visualization types and coordinate
systems, we also plan to offer other features in the future. As
discussed in subsection 5.3, we aim to extend the features of our
vis config to support advanced data transforms akin to those
supported by Vega-Lite. This addition would enhance <VRIA>’s
linked view capabilities especially, by enabling transforms such as
aggregation, binning and other more advanced filtering operations.
The <VRIA> builder currently offers a more streamlined approach
to visualization creation by enabling the creation of visualizations
without leaving the browser. We would like to extend the
builder’s functionality to offer users the possibility of prototyping
visualizations completely inside VR, building up a vis config
without the need to remove the headset between iterations, similar
to what DXR offers with their in-situ GUL

One significant extension that we have already started to
explore is to expand <VRIA>’s capabilities into XR. The use
of the term ‘XR’ in our context is akin to that of the W3C,
denoting alternative immersive technologies (i.e., VR/MR/AR) [18].
Our prior preliminary investigations have utilized marker-based
registration using Vuforia, within the Argon4 browser [52],
and AR.js [53]. At this stage of <VRIA>’s evolution we have
integrated the latter which works with mobile and desktop
browsers, demonstrating <VRIA>’s consumability (besides the
aforementioned Builder), as the output of our framework is directly
included in a typical AR.js set-up. We plan to extend <VRIA>’s XR
capabilities with more registration mechanisms in the future, while
maintaining our conformance to standards-based Web technologies.
The WebVR community is already exploring different registration
solutions, which can be easily integrated with <VRIA> via the
DOM. <VRIA> is also supported in the Microsoft Edge browser
on the Hololens without any reliance on third-party AR software.

8 LESSONS LEARNED

<VRIA> evolved over the period of three years, growing from a
simple, single, stand-alone A-frame visualization application of a
3D bar chart [5], to the current framework. During the creation,
usage and evaluation of early <VRIA> versions [4], [6], [8], we
encountered several technical challenges that directed the evolution
of our framework. In this section we discuss the lessons learned
from addressing these challenges, and provide guidance for the
development of suchlike, Web-based frameworks.

Energy Consumption in the UK since 1997

Fig. 14. <VRIA> can be easily integrated with AR.js to offer data
visualizations in augmented reality on desktop and mobile browsers.
Here we have used a Hiro marker to provided a reference for AR.js to
render a 3D bar chart visualization of the BEIS UK energy consumption
data set. It shows energy consumption across 4 sectors from 1970-2016.

8.1

As we have experienced during the development of all of <VRIA>’s
versions, the synergistic use of established visualization libraries,
such as D3.js, with <VRIA> can be an enabler for the visualization
community, allowing more opportunities for investigations and
application development. Likewise, the same applies when we
consider libraries that introduce XR capability on Web-based
solutions, such as AR.js. For example, we have been using D3.js
seamlessly with <VRIA>, such as for our scatter-plot component
displayed in Figure 12. In that regard, our experience from
developing and using [6] <VRIA> strengthens our belief that
this synthesis of standards-based tools, over the HTML DOM, is
a strong foundation for immersive data visualizations. Moreover,
<VRIA> and its outputs can be interoperable, or even consumed
by other popular tools, such as say Vistrates [16] via the DOM,
resulting in hybrid systems that push the boundaries of immersive
data visualization [7].

VRIA synergies for Visualization

8.2 Accessibility vs Performance

As discussed in subsection 5.6, <VRIA> and similar Web-based
tools face important trade-offs between pervasiveness, ease of
use and performance. The use of libraries, such as Three.js, A-
Frame, and React, simplifies development and usage, especially for
novice users. However, as these libraries are incrementally added
on top of WebGL, and due to the thin-client model and single-
threaded nature of JavaScript, they introduce some performance
barriers. This challenge required us to implement, over time,
performance optimizations to ensure <VRIA> applications could
maintain adequate frame rates when rendering large datasets with
real-time interactions, including those on less powerful devices
such as smartphones. For instance, as our component trees grew
more complex, and the need to pass data down to deeply nested
components increased, we integrated Redux, one of the many state
management solutions available for use in JavaScript applications.
Since its inclusion, Redux has simplified the flow of data through
<VRIA> applications, resulting in a cleaner code base. Overall, as
our intention with <VRIA> is to facilitate quick prototyping of TA
experiences, we opted for openness and ease of use, while ensuring
adequate performance.

Inevitably, although <VRIA> fulfills its purpose as Web-based
tool for building varied, shareable, distributable and consumable 1A
experiences, when it comes to rendering high number of data points
it can not compete, in terms of performance, with game-engine

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

BUTCHER et al.: VRIA: A WEB-BASED FRAMEWORK FOR CREATING IMMERSIVE ANALYTICS EXPERIENCES 11

based systems due to the aforementioned limitations. For <VRIA>,
and similar systems, to achieve higher performances, they needs
to operate closer to the WebGL level, and thus without abstraction
layers such as the one offered by A-Frame, or general purpose state
management mechanisms such as Redux. In this regard, in future
versions of <VRIA> we endeavor to work at the Three.js level, as
well as replace Redux with a bespoke state-management system.
In addition, optimizing rendering mechanisms, such as via mesh
and geometry merging to reduce draw calls, akin to the approach
taken by Stardust [42] and IATK [40] would allow us to render
more points with improved rendering performance.

8.3 Web Standards and maturity

Lastly, it is important to emphasize that standards-based Web
technologies for VR and MR are inevitably not as mature as those
found in the game engine ecosystem. WebVR (soon to be WebXR)
is an experimental technology whose standards are constantly
adjusting as it develops and matures. Browser support for WebVR
is forever changing and software that relies on browser APIs to
display VR/MR content requires frequent updates as a result. This
problem is not limited to the Web, as native desktop applications
often need to be updated to support new versions, as well as their
dependencies. However, as VR/MR enabling technology on the
Web is changing so rapidly, and the ecosystem is currently very
volatile, new software and existing libraries need to constantly
adapt. This is, and will continue to be, an important consideration
that developers need to take into account, before they choose to
build their software using experimental, bleeding-edge technologies
and emerging standards such as WebVR/XR.

We therefore acknowledge that Web-based standards-based
immersive technologies are just past their infancy, and it may
take some time until they mature, become established and are
easily deployable. Limitations such as providing low-level access
to capabilities such as positional sensing, computer vision and
context awareness may not be evident in VR, but emerge in other
XR flavors [28]. Nevertheless, we believe that their potential for
VR/MR-based IA is significant and therefore worth the effort to
explore them and utilize them in analytical scenarios.

9 CONCLUSION

We present <VRIA>, a framework for building Immersive Analytics
solutions in VR, using standards-based Web-technologies. <VRIA>
is built using WebVR, A-Frame and React. The resulting VR
solutions can be experienced through a WebVR-compliant browser
on a variety of devices, ranging from smartphones to HMD-
equipped desktop computers. <VRIA> uses a declarative format for
specifying visualization types through simple configuration files,
simplifying visualization prototyping, data binding and interaction
configuration. We elaborate on <VRIA>’s visualization creation
workflow that provides different development paths for novice,
intermediate and expert developers. The workflow makes optional
use of a dedicated visualization builder, a Web-based interface
that enables developers to easily prototype immersive analytics
experiences and export their visualization configurations. These
configurations can be further customized via the <VRIA> API to
create new immersive depictions. We also present a series of use
cases that demonstrate the functionality and versatility of <VRIA>.
Finally, we discuss current limitations and expand on future work.

As the interest in immersive data visualization increases,
there is a clear need to investigate and devise appropriate

visualization techniques, tailor-made for immersive 3D graphical
environments. Indeed, the question of what works effectively in 3D
immersive visualization built with modern technologies, in terms
of data visualizations and the corresponding interaction techniques,
remains outstanding. We believe that <VRIA> is in a position to
facilitate such investigations, as it allows researchers to deploy
their experimental set-ups though a Web-browser in a variety of
devices, and consequently increase participation and data-collection
opportunities. <VRIA> is free and open source, and available at
https://github.com/vriajs.

REFERENCES

[1] T. Dwyer, K. Marriott, T. Isenberg, K. Klein, N. Riche, F. Schreiber,
W. Stuerzlinger, and B. H. Thomas, Immersive Analytics: An Introduction.
Cham: Springer International Publishing, 2018, pp. 1-23.

[2] HTC Corporation. (2017) HTC Vive. [Online]. Available http://www.
htcvive.com/uk/. Accessed: 12/17/19.

[3] Oculus VR, LLC. (2017) Oculus Rift S. [Online]. Available https:/www.
oculus.com/rift-s/. Accessed: 12/17/19.

[4] P. W. Butcher, J. C. Roberts, and P. D. Ritsos, “Immersive Analytics with
WebVR and Google Cardboard,” in Posters of the IEEE Conference on
Visualization (IEEE VIS 2016), Baltimore, MD, USA, 2016.

[5] P. W. Butcher and P. D. Ritsos, “Building Immersive Data Visualizations
for the Web,” in Procs. of International Conference on Cyberworlds
(CW’17), 2017, pp. 142-145.

[6] P. W.S. Butcher, N. W. John, and P. D. Ritsos, “VRIA - A Framework for
Immersive Analytics on the Web,” in Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems, ser. CHI EA *19.
New York, NY, USA: ACM, 2019, pp. LBW2615:1-LBW2615:6.

[7]1 1. C.Roberts, P. D. Ritsos, S. K. Badam, D. Brodbeck, J. Kennedy, and
N. Elmgqvist, “Visualization Beyond the Desktop - the next big thing,”
IEEE Comput. Graph. Appl., vol. 34, no. 6, pp. 26-34, Nov. 2014.

[8] P. W. Butcher, N. W. John, and P. D. Ritsos, “Towards a Framework for
Immersive Analytics on the Web,” in Posters of the IEEE Conference on
Visualization (IEEE VIS 2018), Berlin, Germany, 2018.

[91 R. M. Rohrer and E. Swing, “Web-based information visualization,” IEEE

Comput. Graph. Appl., vol. 17, no. 4, pp. 52-59, Jul. 1997.

M. Bostock, V. Ogievetsky, and J. Heer, “D3 Data-Driven Documents,”

IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12, pp. 2301-2309, Dec.

2011.

M. Bostock and J. Heer, “Protovis: A Graphical Toolkit for Visualization,”

IEEFE Trans. Vis. Comput. Graphics, vol. 15, no. 6, pp. 1121-1128, Nov.

2009.

A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, “Reactive Vega: A

Streaming Dataflow Architecture for Declarative Interactive Visualization,”

IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 1, pp. 659-668, Jan.

2016.

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-Lite:

A Grammar of Interactive Graphics,” IEEE Trans. Vis. Comput. Graphics,

vol. 23, no. 1, pp. 341-350, Jan. 2017.

V. Vukicevic and B. Jones and K. Gilbert and C. Van Wiemeersch.

(2016) WebXR Device API Specifications. [Online]. Available https://

immersive-web.github.io/webvr/spec/1.1/. Accessed: 17/12/19.

C. N. Klokmose, J. R. Eagan, S. Baader, W. Mackay, and M. Beaudouin-

Lafon, “Webstrates: Shareable dynamic media,” in Procs. of the 28th

Annual ACM Symposium on User Interface Software & Technology, ser.

UIST *15. New York, NY, USA: ACM, 2015, pp. 280-290.

S. K. Badam, A. Mathisen, R. Rédle, C. N. Klokmose, and N. Elmqvist,

“Vistrates: A component model for ubiquitous analytics,” IEEE Trans. Vis.

Comput. Graphics, vol. 25, no. 1, pp. 586-596, Jan. 2019.

W3C. (2017) WebVR. [Online]. Available https://webvr.info/. Accessed:

17/12/19.

B. Jones and N. Waliczek. (2019) WebXR Device API. [Online]. Available

https://www.w3.org/TR/webxt/. Accessed: 17/12/19.

T. Chandler, M. Cordeil, T. Czauderna, T. Dwyer, J. Glowacki, C. Goncu,

M. Klapperstueck, K. Klein, K. Marriott, F. Schreiber, and E. Wilson,

“Immersive Analytics,” in Procs. of Big Data Visual Analytics, ser. (BDVA),

2015, pp. 1-8.

B. Lee, P. Isenberg, N. H. Riche, and S. Carpendale, “Beyond

Mouse and Keyboard: Expanding Design Considerations for Information

Visualization Interactions,” IEEE Trans. Vis. Comput. Graphics, vol. 18,

no. 12, pp. 2689-2698, Dec. 2012.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/vriajs
http://www.htcvive.com/uk/
http://www.htcvive.com/uk/
https://www.oculus.com/rift-s/
https://www.oculus.com/rift-s/
https://immersive-web.github.io/webvr/spec/1.1/
https://immersive-web.github.io/webvr/spec/1.1/
https://webvr.info/
https://www.w3.org/TR/webxr/

12

[21]

[22]

[23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TVCG.2020.2965109

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 201X

N. Elmgqvist, A. Vande Moere, H. C. Jetter, D. 1. Cernea, H. Reiterer,
and T. Jankun-Kelly, “Fluid interaction for information visualization,”
Information Visualization, vol. 10, no. 4, pp. 327-340, Oct. 2011.

N. Elmqvist and P. Irani, “Ubiquitous Analytics: Interacting with Big Data
Anywhere, Anytime,” Computer, vol. 46, no. 4, pp. 86—89, Apr. 2013.
Y. Jansen and P. Dragicevic, “An Interaction Model for Visualizations
Beyond The Desktop,” IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 12,
pp- 2396-2405, Dec. 2013.

W. Willett, Y. Jansen, and P. Dragicevic, “Embedded Data Representations,”

IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 1, pp. 461-470, Jan.
2017.

A. van Dam, A. S. Forsberg, D. H. Laidlaw, J. J. LaViola, and R. M.
Simpson, “Immersive VR for scientific visualization: a progress report,”
IEEE Comput. Graph. Appl., vol. 20, no. 6, pp. 26-52, Nov. 2000.

G. de Haan, M. Koutek, and F. H. Post, “Towards Intuitive Exploration
Tools for Data Visualization in VR,” in Procs. of the ACM Symposium on
Virtual Reality Software and Technology, ser. (VRST). New York, NY,
USA: ACM, 2002, pp. 105-112.

D. Germans, H. J. W. Spoelder, L. Renambot, and H. E. Bal,
“VIRPI: A High-level Toolkit for Interactive Scientific Visualization
in Virtual Reality,” in Procs. of the Eurographics Conference on
Immersive Projection Technology and Virtual Environments, ser. (EGVE).
Eurographics Association, 2001, pp. 109-120.

B. Maclntyre and T. F. Smith, “Thoughts on the future of WebXR and the
immersive web,” in 2018 IEEE International Symposium on Mixed and
Augmented Reality Adjunct (ISMAR-Adjunct), Oct. 2018, pp. 338-342.
S. Zhang, C. Demiralp, D. F. Keefe, M. DaSilva, D. H. Laidlaw, B. D.
Greenberg, P. J. Basser, C. Pierpaoli, E. A. Chiocca, and T. S. Deisboeck,
“An immersive virtual environment for DT-MRI volume visualization
applications: a case study,” in Procs. of Visualization, Oct. 2001, pp.
437-584.

M. Cordeil, T. Dwyer, K. Klein, B. Laha, K. Marriott, and B. H. Thomas,
“Immersive Collaborative Analysis of Network Connectivity: CAVE-style
or Head-Mounted Display?” IEEE Trans. Vis. Comput. Graphics, vol. 23,
no. 1, pp. 441-450, Jan. 2017.

C. Donalek, S. G. Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler,
S. Yeh, A. Mahabal, M. Graham, A. Drake et al., “Immersive and
collaborative data visualization using virtual reality platforms,” in Procs.
of IEEE International Conference on Big Data, Oct. 2014, pp. 609-614.
C. Hurter, N. H. Riche, S. M. Drucker, M. Cordeil, R. Alligier, and
R. Vuillemot, “Fiberclay: Sculpting three dimensional trajectories to
reveal structural insights,” IEEE Trans. Vis. Comput. Graphics, vol. 25,
no. 1, pp. 704-714, Jan. 2019.

M. Drouhard, C. A. Steed, S. Hahn, T. Proffen, J. Daniel, and M. Matheson,
“Immersive visualization for materials science data analysis using the
Oculus Rift,” in Procs. of the IEEE International Conference on Big Data
(Big Data), Oct. 2015, pp. 2453-2461.

N. A. ElSayed, B. H. Thomas, K. Marriott, J. Piantadosi, and R. T.
Smith, “Situated Analytics: Demonstrating immersive analytical tools
with Augmented Reality,” Journal of Visual Languages & Computing,
vol. 36, pp. 13 — 23, 2016.

B. Bach, R. Sicat, J. Beyer, M. Cordeil, and H. Pfister, “The Hologram in
My Hand: How Effective is Interactive Exploration of 3D Visualizations
in Immersive Tangible Augmented Reality?” IEEE Trans. Vis. Comput.
Graphics, vol. 24, no. 1, pp. 457-467, Jan. 2018.

M. Luboschik, P. Berger, and O. Staadt, “On Spatial Perception Issues
In Augmented Reality Based Immersive Analytics,” in Procs. of ACM
International Conference on Interactive Surfaces and Spaces, ser. 1SS.
New York, NY, USA: ACM, 2016, pp. 47-53.

S. Butscher, S. Hubenschmid, J. Miiller, J. Fuchs, and H. Reiterer,
“Clusters, Trends, and Outliers: How Immersive Technologies Can
Facilitate the Collaborative Analysis of Multidimensional Data,” in Procs.
of the 2018 CHI Conference on Human Factors in Computing Systems,
ser. CHI "18. New York, NY, USA: ACM, 2018, pp. 90:1-90:12.

A. Lu, J. Huang, S. Zhang, C. Wang, and W. Wang, “Towards Mobile
Immersive Analysis: A Study of Applications,” in Procs. of Immersive
Analytics Workshop, IEEE VR, J. Chen, E. G. Marai, K. Mariott,
F. Schreiber, and B. H. Thomas, Eds., Mar. 2016.

M. Cordeil, A. Cunningham, T. Dwyer, B. H. Thomas, and K. Marriott,
“ImAxes: Immersive Axes As Embodied Affordances for Interactive
Multivariate Data Visualisation,” in Procs. of the ACM Symposium on
User Interface Software and Technology, ser. (UIST). New York, NY,
USA: ACM, 2017, pp. 71-83.

M. Cordeil, A. Cunningham, B. Bach, C. Hurter, B. Thomas, K. Marriott,
and T. Dwyer, “IATK: An Immersive Analytics Toolkit,” in Procs of the
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Mar.
2019.

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]
[49]
[50]
[51]

[52]

[53]

R. Sicat, J. Li, J. Choi, M. Cordeil, W. Jeong, B. Bach, and H. Pfister,
“DXR: A Toolkit for Building Immersive Data Visualizations,” IEEE
Trans. Vis. Comput. Graphics, vol. 25, no. 1, pp. 715725, Jan. 2019.

D. Ren, B. Lee, and T. Hollerer, “Stardust: Accessible and Transparent
GPU Support for Information Visualization Rendering,” Computer
Graphics Forum, vol. 36, no. 3, pp. 179-188, 2017.

J. Heer, S. K. Card, and J. A. Landay, “Prefuse: A Toolkit for Interactive
Information Visualization,” in Procs. of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’05. New York, NY, USA: ACM,
2005, pp. 421-430.

J. D. Fekete, “The InfoVis Toolkit,” in Procs. of the IEEE Symposium on
Information Visualization, ser. INFOVIS *04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 167-174.

W. E. Mackay, “Augmented Reality: Linking real and virtual worlds: A
new paradigm for interacting with computers,” in Procs. of the Working
Conference on Advanced Visual Interfaces, ser. AVI '98. New York, NY,
USA: ACM, 1998, pp. 13-21.

E. Barba, B. MacIntyre, and E. Mynatt, “Here We Are! Where Are We?
Locating Mixed Reality in The Age of the Smartphone,” Procs. of the
IEEE, vol. 100, no. 4, pp. 929 -936, Apr. 2012.

P. Milgram and F. Kishino, “A Taxonomy of Mixed Reality Visual
Displays,” IEICE Trans. Inf. Sys., vol. E77-D, no. 12, 1994, pp. 1321-
1329.

R. Azuma, “A Survey of Augmented Reality,” Presence, vol. 6, no. 4, pp.
355-385, 1997.

R. Cabello. (2017) Three.js. [Online]. Available https://github.com/
mrdoob/three.js. Accessed: 12/17/19.

J. Dirksen, Learning Three.js: the JavaScript 3D library for WebGL.
Packt Publishing Ltd, 2013.

World Wide Web Consortium. (2016) Frame Timing. [Online]. Available
https://www.w3.org/TR/frame-timing/. Accessed: 17/12/19.

P. D. Ritsos, J. Jackson, and J. C. Roberts, “Web-based Immersive
Analytics in Handheld Augmented Reality,” in Posters presented at the
IEEE Conference on Visualization (IEEE VIS 2017), Phoenix, Arizona,
USA, 2017.

P. D. Ritsos, J. Mearman, J. R. Jackson, and J. C. Roberts, “Synthetic
Visualizations in Web-based Mixed Reality,” in Immersive Analytics:
Exploring Future Visualization and Interaction Technologies for Data
Analytics Workshop, IEEE Conference on Visualization (VIS), Phoenix,
Arizona, USA, B. Bach, M. Cordeil, T. Dwyer, B. Lee, B. Saket, A. Endert,
C. Collins, and S. Carpendale, Eds., Oct. 2017.

Peter W. S. Butcher completed his M.Sc. in
Computer Science at Bangor University, UK
in 2015. He is currently studying for a PhD
in Immersive Analytics at the Department of
Computer Science, University of Chester, UK. His
research interests include Virtual Reality, Web
Technologies and Information Visualization.

Nigel W. John received his PhD degree from
the University of Bath, UK, in 1989. He is
currently a Senior Research Professor within
the Department of Computer Science, University
of Chester, UK. His research interests include
Virtual Reality, Computer Graphics and Medical
Visualization. In 2006 he was awarded the
12th annual Satava Award to acknowledge
his accomplishments in the field of computer
graphics and medical visualization.

Panagiotis D. Ritsos received the PhD degree
from the University of Essex, UK in 2006. He is
currently a Lecturer in Visualization, in the School
of Computer Science and Electronic Engineering,
Bangor University, UK. His research interests
include Human-Computer Interaction, Mixed and
Virtual Reality, and Information Visualization. He
is a member of the IEEE.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
https://www.w3.org/TR/frame-timing/

