EUROGRAPHICS 2020/ M. Romero and B. Sousa Santos

Education Paper

Critical Thinking Sheet (CTS) for design thinking
in programming courses

J. C. Roberts!

and PD.Ritsos!

'Bangor University, UK

Abstract

We present a quick design process, which encourages learners to sketch their design, reflect on the main algorithm and consider
how to implement it. In-depth design processes have their advantages, but often are not practical within the time given to the
student, and may not fit the learning outcomes of the module. Without any planning students often jump into coding without
contemplating what they will do, leading to failure or poor design. Our single-sheet method, allows the learners to critically
think of the challenge and decompose the problem into several subproblems (the appearance, functionality and algorithmic
steps of the solution). We have successfully used this technique for three years in a second year computer graphics module,
for undergraduate degree students studying Computer Science. We present our method, explain how we use it with second year
computer graphics students, and discuss student’s experiences with the method.

Categories and Subject Descriptors (according to ACM CCS): Interfaces and Presentation [H.5.2]: User Interfaces—Graphical
User interfaces (GUI). Computing Milieux [K.3.2]: Computers & Education—Computer Science Education

1. Introduction

Learners and developers often need a quick way to critically think
about their program before implementing it. Especially when pro-
gramming visual computing interfaces, developers need to contem-
plate what the interface will look like, what algorithmic function-
ality needs to be implemented, and what components are required.
In this work we propose a single worksheet, the Critical Thinking
Sheet (CTS), to encourage critical thought and sketched planning
by the individual. By stepping away from the computer, and think-
ing critically about their task, the students will create better pro-
grams: we advocate that students benefit from using the CTS and
reflecting on the problem, and thoughtfully preparing their solution
before jumping into code.

Our vision, is to enable teachers and learners to prepare for the
future. We wish to upskill the next generation of computing de-
velopers and researchers: individuals who are confident design-
ers, critical thinkers, reflective practitioners, and competent in vi-
sual computing development. Individuals who are critical computa-
tional thinkers. This work fits within this vision. In fact, Computa-
tional Thinking (CT) has become a widely cited approach to prob-
lem solving [Win06]. CT emphasises conceptualising and thinking
like a computer scientist, being a skilled computer programmer,
thinking creatively, and combining mathematical and engineering
thinking. While the idea is sound there is little guidance how to
apply computational thinking in reality.

In this paper we provide one way to help learners think criti-

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

cally about their work before coding. It is a quick method, meant
to encourage critical thought, and to help students decompose the
problem into subproblems. It fulfils a different purpose, but remains
complementary to wireframing and UI development techniques or
ideation methods such as the Five Design-Sheet [RHR16]. Indeed,
it is not an in-depth design-study, but meets the challenge of provid-
ing a structure to help students reflect on the problem from different
viewpoints, and move from receiving a “problem description” into
understanding better possible “problem solutions”.

In the background and Related Work (Section 2), we put the
work into context and describe previous research. We explain the
method (Section 3) and present a visual programming exercise sce-
nario along with the results of students using the method (Sec-
tion 4). Finally we report on reflections from our students, discuss
student experiences and conclude.

2. Related Work

There are huge benefits to visual thinking. For example, pictures are
more easily remembered in comparison to words [Pai75], visual
imagery encourages learning associations [San77], and drawings
of problems help to guide conjecture [Anz91]. Sketching and dia-
gramming requires students to contemplate abstract ideas, it helps
them slow down and think carefully about their programming and
explicitly elicit the ideas in their mind [RRJH18]. Visual sketching
can help students discuss their ideas better with their peers and thus
learn different ways to do their tasks [RHR17]. In graphics teach-


https://orcid.org/0000-0001-7718-3181
https://orcid.org/0000-0001-9308-3885

J.C.Roberts & P.D.Ritsos / Critical Thinking Sheet

ing tutors often sketch ideas on paper to explain specific concepts,
lecturers will draw diagrams on white boards to explain algorithms,
and we use animated graphics in our slides to visually explain con-
cepts such as ray tracing or radiosity. Teachers even get students to
create visual artefacts, so why don’t we (as teachers) ask the stu-
dents to plan in a visual way first? Indeed, given the many benefits
to sketching to critically think and plan, it seems surprising that
most subjects and skills rarely use sketching, and it is not widely
taught at an undergraduate level. Sketched planning, wire-framing
and other low-fidelity techniques are certainly used in User Inter-
face modules, and in some STEM subjects [GAOS17] and geol-
ogy [JROS5].

One solution, to help students analyse the task, is to get them to
perform a design-study. Many methods exist in this space to help
students address open-ended questions [Sim73], such as models by
the Design Council [Cou07], Munzner’s nested model for visuali-
sation design [Mun(9], the understand, ideate, make, deploy pro-
cess of McKenna et al. [MMAM14], the nine-stage design-study
model by Sedlmair et al. [SMM12] and the Five Design-Sheets
method [RHR16]. Yet, these activities focus on creativity and alter-
native design solutions. While important aims, they are not neces-
sarily the right learning outcomes for a graphics module, especially
while the student is still developing their programming skills. Fur-
thermore, it is not trivial to perform such studies, consequently stu-
dents take many hours to complete the design-study, time that a sec-
ond year student often does not have. What is needed is a method
that can encourage students to think about the problem from differ-
ent viewpoints [Dij82], which is not a full design-study, and does
not take too long.

There are many methods that we could consider to help stu-
dents learn particular skills, but none of these fit our goals of a
quick computational thinking method. For example, approaches us-
ing making [L16] or token and construction [HCT*14] can help
learners develop their computational thinking skills. Brainstorm-
ing tools such as VisitCards [HA17] can help learners consider
novel solutions. Ad hoc sketching [Bux10] and wireframing de-
sign software focuses the students’ mind on the design appear-
ance of a solution. Unified Modelling Language (UML) [BRJ98]
could be used to help define the underpinning components (how-
ever, like the design-study methods, UML diagramming takes time
to master and create). Nelson’s rules help with design compe-
tence [NS12], while the waterfall model (of requirements, design,
implementation, verification, maintenance), and instructional mod-
els (e.g., ADDIE [BRC*75], Jonassen [Jon97]) help students frame
their problems against real-world projects. Prototypes would enable
students to explore solutions e.g., Lim et al. [LSTO08]) but like the
design-study will take more time to perform.

Our goals are to get the students to (1) understand the question
asked of them, (2) apply knowledge they have learnt to develop a
solution, and (3) analyze and consider the task from different view-
points [Dij82] and divide it into several sub-problems: to consider
the appearance, underpinning algorithm, and functionality of the
problem. We want a technique that was quick to perform, that will
record their initial thoughts (that they can then submit for grading),
which will demonstrate that they have considered all steps.

3. Design of the Critical Thinking Sheet

For the past four years we have been leading a second year Com-
puter Graphics and Algorithms module, with over 80 students each
year, which sits within the second year of a BSc Computer Science
programme. The aim of the module is to “teach fundamental com-
puter graphics algorithms and techniques for computer graphics,
and enable students to gain skills to code graphics programs, and
understand fundamental algorithmic concepts that can be applied
across computer science”. The content of this module includes: in-
formation about graphics libraries (OpenGL and Processing.org)
and graphics standards, rendering algorithms (Z-buffer and Ray
tracing), discrete algorithms such Bresenham’s line drawing algo-
rithm, various boundary fill (flood fill) and scanline algorithms, and
local illumination models (Phong illumination). The module has
weekly lectures with corresponding practical laboratories, where
students are given coding tasks, ranging from drawing grids of
squares, to developing simple line-drawing and flood fill discrete
algorithms.

During one lab session, we realised that several students were
confused about implementing a simple line-drawing algorithm. We
therefore gathered all students around and illustrated the algorithm
through sketching on a large sheet of paper. To follow up this ac-
tivity we got the students to do their own sketches when they were
considering their own tasks. Following weeks, it became a tradition
to sketch the lab questions before starting to code. We brought pens
and pencils and plain sheets of paper to the labs, such that students
could sketch, make notes and try to think computationally about
their tasks.

During the academic year we started to observe several other stu-
dent behaviours, after following this method. First, some students
were frightened to start sketching and planning on a blank sheet of
paper. When asked, students were anxious: “we don’t know where
to start”, “what if it is wrong”, and “what if I make a mistake, how
can I get it right?”. We noticed this very same problem when using
the Five Design-Sheet [RHR16] method; we and other researchers
have discussed anxieties of starting (e.g., [RRJH18,RHR17]). Sec-
ond, some students were not sure of what was required. Some
wrote individual words, others bullet lists. Third, some students did
not use the sheet of paper at all, choosing to ignore any planning.
Fourth, other students hacked the task first and afterwards copied
their code onto the sheet, to fulfil any request to plan via a sheet
of paper. On reflection, we realised that students were using the
sheets for different purposes. Sometimes they sketched what the
output would look like, on some occasions the students drew a flow
chart of the stages of the algorithm, and on other occasions noted
the main stages of the algorithm as pseudo code. We therefore, de-
cided to put structure to the sheet, to guide the students to consider
the problem from different viewpoints, and we gave some instruc-
tion and several completed sheets as examples of its use.

We followed Dijkstra’s approach to divide the challenge into sev-
eral sub-problems [Dij82], and the ideology of “separation of con-
cerns”. We contemplated several different strategies to categorise
these sub-problems. We considered mnemonics such as who, what,
why, when, but felt that this was not suitable for this task because
it does not encourage the students to thing about how the solution
will be created, or what it would the sub-components would be.

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.



J.C.Roberts & P.D.Ritsos / Critical Thinking Sheet

John Dewey, suggests to recognise the problem, define it, suggest
solutions, reason each solution, and then believe or disbelieve each
solution [Dew10]. From this we learn that it is important first to
acknowledge the problem, and then break the solution down into
parts that can be solved. Subsequently, we wanted to have a sec-
tion where the students can explain (in their own words) what is
the problem they are set. George Polya, in his book titled “how to
solve it” similarly describes that to solve a problem you must un-
derstand it, then devise a plan from your own experience, carry out
that plan, and then reflect on your answer [P73]. We were also keen
to have a section for students to sketch, to encourage them to think
about the problem visually. In addition, we wanted to separate the
analysis part into high-level concerns, and low level algorithmic
steps. Subsequently, after much deliberation, we decided on five
sub-problems, shown in Figure 1, each one focusing on a separate
concern:

e In the panel labelled “what is the challenge?” students are
asked to summarise the challenge. They should articulate the
goals of the tool, and list any assumptions that need to be made
by the developer to achieve the goal. This should be the first sec-
tion they complete. It is important that the student understands
and can articulate the challenge in their own words. Without
knowing the challenge, they will not be able to find a suitable
solution.

e On the sketchpad area we ask the students to make a sketch
of the algorithm output. In a graphical task, this would be a
technical illustration of the output. In other words, the output
is sketched along with annotations of sizes, lengths, part names,
etc. If the challenge is an interface, we encourage a picture of the
user-interface along with similar labels. If the task is to develop
an algorithm, then a conceptual diagram could be sketched that
would explain the algorithmic solution.

e Students are asked to consider what are the parts/components.
One strategy would be to consider how it could be implemented.
Another strategy can be to apply knowledge of design pat-
terns [GHIV95, HA06]. We encourage the students to ask them-
selves: “can you explain the work in terms of a class, method or
a design pattern?”

e Consider what are the algorithmic steps? What is the high-
level set of processes? What are the main steps that the algorithm
needs to take? What are the start conditions, the main loop and
consider how the algorithm will terminate or complete? When
the main steps have been considered the student should then con-
sider if there are any detailed steps that need to be added, and
then review the whole algorithm.

e Finally, they should reflect how to take the idea forward. Is
there anything to consider when implementing it? Do they need
to do more research? How can the ideas be implemented? Have
any assumptions been made? Is the algorithm complete; is it too
simple or too complex?

In addition, and when using the sheet we encourage the students to
follow Polya’s four stage problem solving strategy (see [RHR17,
P73]) as follows: (1) make sure they understand the problem, (2)
use the CTS to ideate a plan that will help develop a solution, (3)
reflect on the CTS plan, and carry it out by implementing the algo-
rithm in code and (4) reflect on their coding solution and the use of
the CTS.

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

PROBLEM: NAME: DATE:

Sketchpad
What is the

challenge?

What are the
parts or
components?

What to
think about
when
implementing?

What are the
algorithmic steps?

Figure 1: Critical Thinking Sheet, with five areas: sketchpad, what
is the challenge, components, algorithmic steps, and reflection.

4. The Critical Thinking Sheet (CTS) in our teaching

In the second-year Computer Graphics and Algorithms module we
first get the students to use the CTS in five classroom sessions each
with three tasks, and one coursework programming assessment. We
expect students to spend a few minutes on each CTS sheet. Once
they have read through the task they should spend enough time to
think about the problem, work out a solution, and put this down
on the CTS sheet. They should do this task as quickly as possible,
without wasting time to make the sheet look perfect. The actual
length they spend on the CTS can vary, and depends on the com-
plexity of the task.

The tasks in our labwork gradually increase in difficulty. Five as-
sessed labs are given, each matching with the lecture of that topic.
Each lab has three core tasks to complete. Good students finish
in about 40 minutes, whereas weaker students take the full two
hours that is allocated to each session. They are able to ask for help
from the lab assistants. Students submit a logbook of their labwork
demonstrating their work, which includes scanned copies of their
CTS sheets, along with code snippets, full code, result screenshots
and reflection of work done. This is graded and accounts for 10%
of the mark for the module. It is graded using a simple three-stage
marking strategy (above average, average, and poor). The idea is
that students learn how to use the CTS sheets, gain formative and
summative feedback on their work, improve their coding skills and
develop good practices. They start by drawing coloured grids and
triangular patterns, which gets them using the graphics library. De-
velop their own line-drawing algorithm (through plotting rectan-



J.C.Roberts & P.D.Ritsos / Critical Thinking Sheet

gles), and then create gridded, circular and hierarchical patterns,
before focusing on a small plotting program where they create their
own rectangle fill algorithm, and circle plotting algorithm (plotted
in rectangles, such to mimic a frame buffer). Figure 2 shows three
labwork examples, from three different students.

In addition they receive a large self-study assessment. We get the
students to develop an interactive pixel-pattern tesselator. The idea
is to design and implement a wallpaper pattern editor; a pattern in a
small tile of pixels is replicated across the main design space. The
tile can be rotated, translated, mirrored and so on, to create different
patterns. To achieve this, students need to understand transforma-
tions, hold the state of the wallpaper patterns in an appropriate data
structure, and develop a simple interface. They are encouraged to
follow the Model View Controller (MVC) pattern to achieve their
implementation. We have run this process for three years, one year
using OpenGL, and the final two years with the Processing library
(processing.org). This assessment is worth 30% of the module.

We asked the students to write a critical reflective report on their
work that explains their tool, includes at least one screenshot, code
snippets, and makes an in-depth critical reflection of how they used
the critical thinking sheet. Figure 3 shows the results of two stu-
dents. They also submit their code, and a movie of their tool work-
ing. Finally they take an exam, worth 60% of the 5 ECTS credit
bearing module.

4.1. Reflection on student feedback

Because we asked every student to write a reflective report and
comment on the processes and learning that they achieved, we have
a broad set of comments. Below we report on a representative sam-
ple of their feedback.

James said “normally, I don’t use any sort of planning material,
as code I write can undergo drastic changes at any moment. How-
ever, using the Critical Thinking Sheet for this task was a great ben-
efit, as the Steps and Rules section allowed me to plan it out rather
effectively, as well as scribble down any ideas I thought could be
included in the final version.” This is a positive outcome and shows
that he thought about how the sheet had been used. James did not
complete the work, but was able to sketch his ideas on the sheet,
getting some marks for his design. He went on to say “a few ideas I
had weren’t included within the final version due to my own inabil-
ity to effectively code them, such as the possible inclusion of a Ul or
inverting the colour scheme from RGB to CMY.” Another student,
Lisa, obviously wanted to go further in her implementation, writ-
ing “More advanced patterns, ...could have been added to make
design more creative, as explained in the Critical Thinking Sheet.”
This is again positive, because she has reflected on the sheet, and
understood that she could design something different to her final
implementation.

It was also good to read how the sheets were used to design the
interface. For example, Raj wrote “the critical thinking sheets were
useful in laying out my design before starting my code, it also al-
lowed me to work out all the measurements in advanced rather than
trial and error each time you run the code etc.”

Frank added many positive comments about his experience with

the assessment. He submitted several sheets, and clearly enjoyed
the planning and the coding tasks: “the first critical sheet I created
was when I just started working on the project. I had an idea of
how to create the tool, but actually making a quick design and not-
ing down some initial ideas helped me. By completing this sheet,
I was able to see how the pattern could be repeated.” He under-
stood our ideology, saying “if I started by going straight to writing
the code, it’s likely that I would have forgotten about the push/pop
matrix, meaning I would be wasting time trying to fix errors.” In
fact, this is what we had hoped for. He had carefully considered
the challenge, drawn on his experiences, designed something that
worked well and reflected on his work. Another student, let’s call
her Gillian, made a very similar comment: “The main benefit of us-
ing a critical thinking sheet was in solving this problem by allowing
me to visually demonstrate where the tiles and squares needed to be
rather than making guesses about the offset formula which should
be used”.

Yet, not all students liked sketching or planning using the sheet,
whereas some did not like to perform any planning at all. Jack said
“I didn’t use any critical thinking sheets for this assignment. While
1 am sure they are useful for some, I found them more hindrance
than help in the previous labs, and so in the interest of time ignored
them. People learn and work in many ways; for me personally,
the critical thinking sheets were not helpful. I would work through
the critical thinking sheet but by the end of the assignment I had
changed so much, often due to an initial oversight or new idea, that
it became barely relevant”. In one respect, this student has a correct
understanding: certainly, some ideas (on some sheets) will need to
be thrown away. The CTS is a tool to help students develop their
thoughts, and should be treated as such and not an arduous task. It
is designed to move students from a basic understanding of the task
into a deep understanding. In addition, we acknowledge that it also
does take time to complete. However, learning takes time, and care-
ful critical thinking takes time too. Francis also wrote negatively,
saying “I struggle to gain anything much of value before sitting
down and trying to bash some code out . ..and if I get stuck ... I do
scrawl some working out in my notebook”. In fact, she did submit
some sketches, but these did not follow the CTS structure. Even
with these sketches she exhibited critical thought and ideation.

5. Discussion

There are clearly some students who enjoy using the sheet, while
others do not. We found it difficult to encourage every student to use
it, and some insisted that they were fine without it. At times we felt
exasperated with our students in the 2nd year graphics course. We
are not alone with these frustrations, as exemplified by books such
as “getting the buggers to think” [Cow07]. Not only does this title
express the huge exasperation of the teacher, but it provides practi-
cal advice and exercises to help teachers get students to think. We
have had some students argue with us that they should not use the
critical thinking sheet, that they knew exactly what was expected
of them, and that they knew how to code it. But then these very
same students (half and hour later) were still typing and guessing
different coordinates to move a triangle vertex left a little bit more.
If only they had thought about the problem, used the sheet, they
would have realised a simple solution — to use inbuilt variables of

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.






