
Creating Explanatory Visualizations of Algorithms for Active Learning
Jonathan C. Roberts∗

Bangor University, UK
James Jackson†

Bangor University, UK
Christopher Headleand‡

University of Lincoln, UK
Panagiotis D. Ritsos§

University of Chester, UK

ABSTRACT

Visualizations have been used to explain algorithms to learners, in
order to help them understand complex processes. These ‘explana-
tory visualizations’ can help learners understand computer algo-
rithms and data-structures. But most are created by an educator and
merely watched by the learner. In this paper, we explain how we get
learners to plan and develop their own explanatory visualizations of
algorithms. By actively developing their own visualizations learn-
ers gain a deeper insight of the algorithms that they are explaining.
These depictions can also help other learners understand the algo-
rithm.

Keywords: Explanatory visualization, Information Visualization,
Teaching visualization, Learning Support

Index Terms: H.5.2 [Interfaces and Presentation]: User
Interfaces—Graphical User interfaces (GUI). K.3.2 [Computing
Milieux]: Computers & Education—Computer Science Education

1 INTRODUCTION

Learners often find computer graphics and scientific visualization
algorithms complex and difficult to understand. Explanatory vi-
sualizations can help tell the story of how a process occurs or an
algorithm works on a dataset. For instance, displaying the different
cases of the Marching Cubes algorithm [4] is demonstrated more
easily by animating the cases with a test dataset and an explanatory
visualization presentation.

Computing education is an area where explanatory visualizations
have been successfully used. For example, searching the internet
for “visualization of sorting algorithms” produces a large number
of informative examples. Most of the search results are anima-
tion videos and while they do explain the algorithms, they have
been hand-crafted by the educator and are merely ‘viewed’ by the
learner. There are some examples where the learner can interact
with a tool to change parameters and tryout different algorithm con-
figurations, but still the workload – and especially the design and
creative imagination – resides with the educator.

We propose a different strategy, where the learner is actively in-
volved in making their own explanatory visualization. This expe-
riential learning approach enables the learner to engage with the
design and makes their own decisions as to how the data is visual-
ized, taking ownership of their learning. While this active learning
process may take longer it gives the learner a much deeper under-
standing of the underlying principles of the algorithms. Students
comprehend better the important steps and can explain the concepts
in a discerning way.

Our methodology is to get students to individually think, plan,
and develop their own explanatory visualizations. The students cri-
tique their work throughout the process and so develop their critical

∗e-mail: j.c.roberts@bangor.ac.uk
†e-mail: j.jackson@bangor.ac.uk
‡e-mail: cheadleand@lincoln.ac.uk
§e-mail: p.ritsos@chester.ac.uk

thinking, in addition to their application skills. Fig. 1 shows our Ex-
planatory Visualization active learning cycle, broken down into six
stages. We demonstrate the work, with the case study of a student
who visualized the Marching Squares algorithm.

2 BACKGROUND & RELATED WORK

While different styles of visualization exist, our approach focuses
on explanatory techniques. In this paper we focus on a third year
Computer Graphics & Visualization course for Computer Science
undergraduate-major students. These students are studying for their
three-year BSc honors degree in the UK. In Semester 1, learners
perform all the research and planning stages, and in Semester 2
they start coding, reflect on their code and demonstrate their so-
lutions. The advantage of using active learning [5] techniques is
that learners more proactively interact with the material engaging
multi-sensory learning, rather than merely listening passively to the
teacher. Students can become motivated by the task, if the task is
something interesting and they see it being worthwhile. Grissom et
al. [1] write “The true value of using visualizations may lie not in
their content but rather in their serving as a motivational factor to
make students work harder”.

Active learning techniques are not new, e.g., Stasko [7] used an-
imation as a learning aid, and Hundhasuen and Douglass [2] eval-
uate the benefits of using visualizations to help students learn al-
gorithms, whereas tools such as Greenfoot (greenfoot.org) use ani-
mation to teach programming skills. But, most prior work only fo-
cuses on the (i) design and (ii) implementation of these algorithms.
We, however, have developed a formal structure, that draws upon
Kolb’s [3] experiential learning cycle. We integrate thinking, with
modifying (through improvements from formative feedback). Inte-
grating, experiencing and practicing the ideas through sketching-
by-design, building the tool, and reflecting on the work. Further-
more, our approach takes the student through the entirety of the
Blooms taxonomy, from knowledge to synthesis and evaluation.

3 METHODOLOGY & CASE STUDY

The 20 credit computer graphics & visualization course is split
over two teaching Semesters (before and after Christmas). In
Semester 1, the students are first given traditional lectures on all
the algorithms, choose their topic and started planning their visu-
alization. Forty students chose from a list of 50 topics, including
Marching Squares/Cubes, Volume Rendering, Ray-tracing, linear
interpolation and use of transfer functions. Because each student
investigates their own algorithm, they can readily work together and
exchange design ideas without problems of plagiarism. Students, in
Semester 2, develop their code and complete the assessment.

Our formal structure follows six parts (see Fig. 1 and explained
below). At each stage, their work is evaluated formatively (with
the teacher giving individual verbal feedback in a classroom set-
ting), learners improve this version and submit for summative as-
sessment. We include examples from a student (Tom) who chose
the Marching Squares 2D piecewise linear contour algorithm.

Research. Students look at books, papers from IEEE and ACM
digital libraries and other resources online to understand the algo-
rithm or technique. Tom looked at the original Lorensen & Cline [4]
algorithm and other papers.

Summary-document. A two-page summary of the algorithm is
created. Every student has the same structure of: History, Pseudo



Figure 1: Our Explanatory Visualization active learning cycle. Students choose an algorithm, perform research, plan through sketching, gain
formative and summative marks and demonstrate their tool that demonstrates a computer graphics or visualization algorithm.

code, Maths, Diagram, Application, Similar techniques, Refer-
ences. Several indicators of quality exist here, from written de-
scriptions to the quality of the diagram. One diagram from Tom’s
two-page summary report is shown in Fig. 2 clearly articulating the
main parts of the algorithm.

Design-by-sketching. Students use the Five Design-Sheet
methodology [6] to sketch different visualization concepts (sheet
1), three alternative but potentially implementable designs (sheets
2,3,4) and sketch the realization design (sheet5). Formative feed-
back is given to the students on their ideas. Tom explored 23 ideas
(on sheet 1), including: applying a threshold, matching the case
in the look-up table, interpolating the piecewise segments to their
exact position after retrieving them from the lookup-table, the act
of marching from one voxel to another, resolving ambiguities, to
generating statistical analysis over different cases from given data.

Storyboard. The learners create a storyboard to describe the
main key stages of their explanatory visualization. This further con-
firms their knowledge of the main aspects of the algorithm.

Code. The students had to use OpenGL or WebGL due to pre-
requisite course requirements. However, other graphics libraries
could be readily used instead. Over a 3 month development pe-
riod, students met weekly with the academic tutor to gain feedback
on their progression. Tom chose to develop an interactive, WebGL
application. Users can generate test data to visualize (he spent ef-
fort to make it random, but to filter out very small unconnected
scalar points), and then animate the index and contour generation
per voxel.

Technical report. Finally, students wrote a technical report on
their work, which included a critical evaluation of their achieve-
ments and explanatory visualization, and they gave a demonstration
of their visualization to the tutor.

1
1

1
1

1

1
2

2
1

2

1
3

2
1

4

1
2

2
1

3

1
1

1
1

1

0
0

0
0

0

0
1

1
0

1

0
1

1
0

1

0
1

1
0

1

0
0

0
0

0

1 1
0 0

1100
=
12d c

a b a b c d

threshold with iso value

Figure 2: Marching Squares figure from Tom’s two-page summary
sheet, that explains the main stages.

4 DISCUSSION & CONCLUSIONS

We have made a preliminary evaluation of the process. Students
completed an anonymous questionnaire of 10 questions. We re-
ceived positive and encouraging feedback. One student wrote “it
broke down a project into its logical steps (design – implementation
– evaluation)”, another “it is a good way to guide students from un-
derstanding, thinking and then implementing”. The two-page sum-
mary sheet gets the students thinking about the algorithm, and the
tutor can ascertain if a student does actually understand the algo-
rithm! Extra help can be given, if a student is confused. Sketching
using the Five Design-Sheet [6] method encourages the students to
be creative and imaginative. While students were given the opportu-
nity to re-submit each FdS only two students decided to re-submit.
On reflection, we believe that students would benefit from more
design teaching in their computer science program, and using the
FdS multiple times would benefit the students’ learning. Previous
years, we have used a more ad hoc method of design and building
in this module. Our 6-part structure developed better solutions, and
the grades were (on average) better than previous years. No plagia-
rism was found and students benefited from being able to discuss
their work with others: “you have the opportunity to . . . explain the
algorithm you are creating with students in the same course”. We
recommend other educators to use a similar active learning strategy
and to use explanatory visualization in learning. because students
perform better, and understand the work more deeply.

REFERENCES

[1] S. Grissom, M. F. McNally, and T. Naps. Algorithm visualization in
CS education: Comparing levels of student engagement. In Proc. ACM
Symp. Soft. Vis., pages 87–94. ACM, 2003.

[2] C. Hundhausen and S. Douglas. Using visualizations to learn algo-
rithms: should students construct their own, or view an expert’s? In
IEEE Symp. on Visual Languages, pages 21–28, 2000.

[3] A. Y. Kolb and D. A. Kolb. Learning styles and learning spaces: En-
hancing experiential learning in higher education. Academy of manage-
ment learning & education, 4(2):193–212, 2005.

[4] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In SIGGRAPH, pages 163–169, New
York, NY, USA, 1987. ACM.

[5] C. Meyers and T. B. Jones. Promoting Active Learning. Strategies for
the College Classroom. ERIC, 1993.

[6] J. C. Roberts, C. Headleand, and P. D. Ritsos. Sketching designs using
the five design-sheet methodology. IEEE Trans. on Vis. and Comp.
Graph., 22(1):419–428, Jan 2016.

[7] J. T. Stasko. Using student-built algorithm animations as learning aids.
SIGCSE Bull., 29(1):25–29, Mar. 1997.


