Panagiotis D. Ritsos

MEng PhD Essex, FHEA

Lecturer in Visualization

Immersive Environments Lab
Visualization, Data, Modelling and
Graphics (VDMG) research group,

School of Computer Science
and Electronic Engineering,

Bangor University,
Dean Street, Bangor,
Gwynedd, UK, LL57 1UT

Five Design Sheets - A framework for prototyping information visualization interfaces through sketching

fds

Sketching designs has been shown to be a useful way of planning and considering alternative solutions. The use of lo- fidelity prototyping, especially paper-based sketching, can save time, money and converge to better solutions more quickly. However, this design process is often viewed to be too informal. Consequently users do not know how to manage their thoughts and ideas (to first think divergently, to then finally converge on a suitable solution). We present the Five Design Sheet (FdS) methodology. The methodology enables users to create information visualization interfaces through lo-fidelity methods. Users sketch and plan their ideas, helping them express different possibilities, think through these ideas to consider their potential effectiveness as solutions to the task (sheet 1); they create three principle designs (sheets 2,3 and 4); before converging on a final realization design that can then be implemented (sheet 5).

J. C. Roberts, C. Headleand, and P. D. Ritsos, “Sketching Designs Using the Five Design-Sheet Methodology,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 419–428, Jan. 2016. Sketching designs has been shown to be a useful way of planning and considering alternative solutions. The use of lo-fidelity prototyping, especially paper-based sketching, can save time, money and converge to better solutions more quickly. However, this design process is often viewed to be too informal. Consequently users do not know how to manage their thoughts and ideas (to first think divergently, to then finally converge on a suitable solution). We present the Five Design Sheet (FdS) methodology. The methodology enables users to create information visualization interfaces through lo-fidelity methods. Users sketch and plan their ideas, helping them express different possibilities, think through these ideas to consider their potential effectiveness as solutions to the task (sheet 1); they create three principle designs (sheets 2,3 and 4); before converging on a final realization design that can then be implemented (sheet 5). In this article, we present (i) a review of the use of sketching as a planning method for visualization and the benefits of sketching, (ii) a detailed description of the Five Design Sheet (FdS) methodology, and (iii) an evaluation of the FdS using the System Usability Scale, along with a case-study of its use in industry and experience of its use in teaching.
[Abstract]   [Details]   [PDF]   [doi:10.1109/TVCG.2015.2467271]  

J. C. Roberts, C. J. Headleand, and P. D. Ritsos, Five Design-Sheets: Creative Design and Sketching for Computing and Visualisation. Springer, 2017. This book describes a structured sketching methodology to help you create alternative design ideas and sketch them on paper. The Five Design-Sheet method acts as a check-list of tasks, to help you think through the problem, create new ideas and to reflect upon the suitability of each idea. To complement the FdS method, we present practical sketching techniques, discuss problem solving, consider professional and ethical issues of designing interfaces, and work through many examples. Five Design-Sheets: Creative Design and Sketching for Computing and Visualization is useful for designers of computer interfaces, or researchers needing to explore alternative solutions in any field. It is written for anyone who is studying on a computing course and needs to design a computing-interface or create a well-structured design chapter for their dissertation, for example. We do acknowledge that throughout this book we focus on the creation of interactive software tools, and use the case study of building data-visualization tools. We have however, tried to keep the techniques general enough such that it is beneficial for a wide range of people, with different challenges and different situations, and for different applications.
[About]   [Details]   [ISBN:978-3319556260]  

J. C. Roberts, C. Headleand, and P. D. Ritsos, “Half-day Tutorial on Sketching Visualization designs, and using the Five Design-Sheet (FdS) Methodology in Teaching,” in Tutorials of at the IEEE Conference on Visualization (IEEE VIS 2017), Phoenix, AZ, USA, 2017. This tutorial leads attendees through sketching designs following the Five Design-Sheet methodology (FdS) and discusses how it can be used in teaching. The first part (before the break) will introduce the FdS, place it in context with other methods, discuss creative thinking and different problem types, explain the benefit of sketching designs, and provide a worked example of the FdS. The second part (after the break) focuses on using the FdS in teaching in Higher Education We give examples of students’ work, and discuss issues and challenges of using sketching for designing and prototyping in teaching, followed by a question and answer session.
[Abstract]   [Details]   [PDF]  

J. C. Roberts, C. Headleand, and P. D. Ritsos, “Sketching Designs for Data-Visualization using the Five Design-Sheet Methodology,” in Tutorials of at the IEEE Conference on Visualization (IEEE VIS 2016), Baltimore, MD, USA, 2016. The tutorial will be useful for anyone who has to create visualization interfaces, and needs to think through different potential ways to display their data. At the end of the tutorial participants will understand techniques to help them be more structured in their ideation. They will be able to sketch interface designs using the Five Design Sheet methodology (FdS). While we know that some developers have started to use the Five Design-Sheet methodology, but this tutorial will start from the beginning and be suitable for any attendee. More information and resources are found on http://fds.design.
[Abstract]   [Details]   [PDF]