Path-based Design Model for Constructing and Exploring Alternative Visualisations
We present a path-based design model and system for designing and creating visualisations. Our model represents a systematic approach to constructing visual representations of data or concepts following a predefined sequence of steps. The initial step involves outlining the overall appearance of the visualisation by creating a skeleton structure, referred to as a flowpath. Subsequently, we specify objects, visual marks, properties, and appearance, storing them in a gene. Lastly, we map data onto the flowpath, ensuring suitable morphisms. Alternative designs are created by exchanging values in the gene. For example, designs that share similar traits, are created by making small incremental changes to the gene. Our design methodology fosters the generatiion of diverse creative concepts, space-filling visualisations, and traditional formats like bar charts, circular plots and pie charts.
Related Publications
J. Jackson, P. D. Ritsos, P. W. S. Butcher, and J. C. Roberts, “Path-based Design Model for Constructing and Exploring Alternative Visualisations,” IEEE Transactions on Visualization and Computer Graphics, 2025.
We present a path-based design model and system for designing and creating visualisations. Our model represents a systematic approach to constructing visual representations of data or concepts following a predefined sequence of steps. The initial step involves outlining the overall appearance of the visualisation by creating a skeleton structure, referred to as a flowpath. Subsequently, we specify objects, visual marks, properties, and appearance, storing them in a gene. Lastly, we map data onto the flowpath, ensuring suitable morphisms. Alternative designs are created by exchanging values in the gene. For example, designs that share similar traits, are created by making small incremental changes to the gene. Our design methodology fosters the generatiion of diverse creative concepts, space-filling visualisations, and traditional formats like bar charts, circular plots and pie charts. Through our implementation we showcase the model in action. As an example application, we integrate the output visualisations onto a smartwatch and visualisation dashboards. In this article we (1) introduce, define and explain the path model and discuss possibilities for its use, (2) present our implementation, results, and evaluation, and (3) demonstrate and evaluate an application of its use on a mobile watch.
[Abstract]
[Details]
[PDF]
[Preprint]
[doi:10.1109/TVCG.2024.3456323]
[Presented at IEEE VIS 2024]