Panagiotis D. Ritsos

MEng PhD Essex, FHEA

Senior Lecturer in Visualization

XReality, Visualization and
Analytics (XRVA) Lab

Visualization, Data, Modelling and
Graphics (VDMG) research group,

School of Computer Science
and Engineering,

Bangor University,
Dean Street, Bangor,
Gwynedd, UK, LL57 1UT

VR Powered Wheelchair Training Simulator

XReality

There has been some previous research into using virtual reality (VR) to help train wheelchair users, but price and technology limitations have been a barrier to commercial adoption (see details in section 2). However, affordable, high fidelity interfaces for VR such as head mounted display are now readily available. We investigated whether a serious game that utilises affordable modern interface technologies can provide a safe environment in which a new user of a powered wheelchair can quickly learn how to operate it, and navigate it, in a variety of different scenarios.

Collaborators

University of Chester, Lincoln University

N. W. John, S. R. Pop, T. W. D. Day, P. D. Ritsos, and C. J. Headleand, “The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 5, pp. 1867–1878, May 2018. Navigating a powered wheelchair and avoiding collisions is often a daunting task for new wheelchair users. It takes time and practice to gain the coordination needed to become a competent driver and this can be even more of a challenge for someone with a disability. We present a cost-effective virtual reality (VR) application that takes advantage of consumer level VR hardware. The system can be easily deployed in an assessment centre or for home use, and does not depend on a specialized high-end virtual environment such as a Powerwall or CAVE. This paper reviews previous work that has used virtual environments technology for training tasks, particularly wheelchair simulation. We then describe the implementation of our own system and the first validation study carried out using thirty three able bodied volunteers. The study results indicate that at a significance level of 5% then there is an improvement in driving skills from the use of our VR system. We thus have the potential to develop the competency of a wheelchair user whilst avoiding the risks inherent to training in the real world. However, the occurrence of cybersickness is a particular problem in this application that will need to be addressed.
[Abstract]   [Details]   [PDF]   [doi:10.1109/TVCG.2017.2700273]   [Presented at IEEE VR 2018]

C. J. Headleand, T. Day, S. R. Pop, P. D. Ritsos, and N. W. John, “A Cost-Effective Virtual Environment for Simulating and Training Powered Wheelchairs Manoeuvres,” Proceedings of NextMed/MMVR22, Los Angeles, USA, 2016. Control of a powered wheelchair is often not intuitive, making training of new users a challenging and sometimes hazardous task. Collisions, due to a lack of experience can result in injury for the user and other individuals. By conducting training activities in virtual reality (VR), we can potentially improve driving skills whilst avoiding the risks inherent to the real world. However, until recently VR technology has been expensive and limited the commercial feasibility of a general training solution. We describe Wheelchair-Rift, a cost effective prototype simulator that makes use of the Oculus Rift head mounted display and the Leap Motion hand tracking device. It has been assessed for face validity by a panel of experts from a local Posture and Mobility Service. Initial results augur well for our cost-effective training solution.
[Abstract]   [Details]   [PDF]   [PMID:27046566]  

C. J. Headleand, T. Day, S. R. Pop, P. D. Ritsos, and N. W. John, “Challenges and Technologies for Low Cost Wheelchair Simulation,” in Eurographics Workshop on Visual Computing for Biology and Medicine, 2015. The use of electric wheelchairs is inherently risky, as collisions due to lack of control can result in injury for the user, but also potentially for other pedestrians. Introducing new users to powered chairs via virtual reality (VR) provides one possible solution, as it eliminates the risks inherent to the real world during training. However, traditionally simulator technology has been too expensive to make VR a financially viable solution. Also, current simulators lack the natural interaction possible in the real world, limiting their operational value. We present the early stages of a VR, electric wheelchair simulator built using low-cost, consumer level gaming hardware. The simulator makes use use of the the Leap Motion, to provide a level of interaction with the virtual world which has not previously been demonstrated in wheelchair training simulators. Furthermore, the Occulous Rift provides an immersive experience suitable for our training application
[Abstract]   [Details]   [PDF]   [doi:10.2312/vcbm.20151225]