Panagiotis D. Ritsos

MEng PhD Essex, FHEA

Lecturer in Computer Science

Visualization, Modelling and
Graphics (VMG) research group,

School of Computer Science,
Bangor University,
Dean Street, Bangor,
Gwynedd, UK, LL57 1UT

Find our book on Amazon:

fdsBook

Medical Simulations

Description

Health care professionals can use high-fidelity virtual training simulation (VTS) so that necessary procedures may be practiced and refreshed before operating on a real person. Advantages of relying on such controlled learning environments includes; zero patient risk, development of psychomotor skills for the medical tools and the opportunity to experience challenging ‘what if’ scenarios. In this theme we explore the use of haptics in a series of haptic-enabled biopsy simulators, such as Transperieneal Prostate and Kidney biopsies and immersive, interactive technologies, in scenarios such as wheelchair navigation in VR. We couple haptic devices, such as Phantom Omnis with novel interfaces such as zSpace, Leap Motion and Oculus Rift.

Collaborators (in various publications): Bangor University, University of Chester

 

  • N. W. John, S. R. Pop, T. W. D. Day, P. D. Ritsos, and C. J. Headleand, “The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres,” IEEE Transactions on Visualization and Computer Graphics, vol. PP, no. 99, pp. 1–1, 2017.
  • C. J. Headleand, T. Day, S. R. Pop, P. D. Ritsos, and N. W. John, “A Cost-Effective Virtual Environment for Simulating and Training Powered Wheelchairs Manoeuvres,” Proceedings of NextMed/MMVR22, 2016.
  • P. D. Ritsos, M. R. Edwards, I. S. Shergill, and N. W. John, “A Haptics-enabled Simulator for Transperineal Ultrasound-Guided Biopsy,” in Eurographics Workshop on Visual Computing for Biology and Medicine, 2015.
  • C. J. Headleand, T. Day, S. R. Pop, P. D. Ritsos, and N. W. John, “Challenges and Technologies for Low Cost Wheelchair Simulation,” in Eurographics Workshop on Visual Computing for Biology and Medicine, 2015.